American Experience: Rachel Carson

Last night my local PBS station broadcast the latest episode of their long running program ‘The American Experience’ covering the life and work of the noted naturalist Rachel Carson. Now, American Experience deals in history and biography rather than science but Rachel Carson is certainly worth a post on a science blog. I will however concern myself more with Ms. Carson’s work rather than her life story. For anyone interested in Rachel Carson’s struggles against numerous personal tragedies I heartily recommend the episode.

Rachel Carson on the American Experience on PBS

Sitting here right now with my copies of ‘The Sea Around Us’ and ‘Silent Spring’ at my side I can recall growing up in the 60’s when Rachel Carson’s work was new, revolutionary and hence very controversial. Science and nature were very important in my family so I read Ms. Carson in high school. I have to admit I liked “The Sea Around Us’ better than “Silent Spring’ back then.

The idea that something that was clearly beneficial in the short term may in fact be harmful in the long run was a difficult concept for some people to grasp, as it still is. Ms. Carson herself recognized the advance in public health that pesticides such as DDT had provided. In World War 2 DDT had saved thousands of our soldiers from diseases such as Malaria, Typhus and Yellow Fever and shortly after the war it succeeded in eliminating Malaria and Yellow Fever from the SE United States. Rachel Carson never argued for the elimination of all synthetic pesticides but rather their careful use along with more exhaustive studies into their long term effects.

Of course there were powerful vested interests who opposed Ms. Carson and the other naturalists studying civilization’s impact on the natural world. Let’s be honest, this is a political fight that’s still in progress and the eventual victor is not yet clear.

Maybe I can make a analogy that even the most extreme anti-environmentalist can agree with. A rifle can be a very useful device, you can obtain food with it, you can protect yourself with it, you can even have fun just seeing how well you can shoot with it! But if you’re not careful when you’re cleaning it you can blow your bloody head off. That doesn’t make you a good conservative it just makes you really, really stupid.

Today we remember Rachel Carson for her influence on the beginnings of the modern environmental movement and in some ways I think that distorts her place in the history of science. I think, if you take a step back you can see how Ms. Carson was herself influenced by such scientists as Charles Darwin and Charles Lyell, both proponents of gradualism who studied the world in the long term. Then you can see that Rachel Carson is not so much revolutionary as evolutionary. Of course there are some people who find that word even more distasteful.

Over the next few years I’m afraid that Rachel Carson’s work is going to become even more important as our current government does all it can to poison the Earth in the pursuit of larger corporate profits for the rich and famous. They may win you know, I do think human ingenuity is capable of producing a world with only man, his pets and his parasites. It will be an ugly world however.

That’s my opinion, what’s yours?

 

 

Searching for ET on Wolf 1061c

Over the past two decades astronomers have had a field day discovering new planets orbits other stars within our galaxy. As of the beginning of 2017 more than 3500 extrasolar planets have been discovered, enough to give astronomers a good statistical sample of how many planets are out there, and what kind.

Artist’s Concept of the Wolf1061 System

Those planet’s which orbit their star in the ‘habitable zone’ where liquid water can exist on their surface have received extra attention because of the possibility that life may exist on them. Such planets are neither too close to their star nor too distant and are often referred to as Goldilocks planets. Wolf 1061c is one such planet and at a distance of 13.8 light years it is one of the closest.

Astronomer Stephen Kane of San Francisco State University is presently conducting an extensive examination of Wolf 1061c to learn all we can with our present technologies while at the same time preparing for further studies as new instruments come on line.

The parent star of Wolf 1061c is a small red dwarf star whose energy output is only 0.15% that of our Sun. This means that the planet must orbit very close to it’s star in order to receive enough sunlight to warm it’s surface. The planet itself has a mass of an estimated 4.25 times that of our Earth so it may have a much stronger surface gravity.

Also, Wolf 1061c is the middle of three planets known to orbit Wolf 1061. All of them are believed to be rocky worlds more massive than Earth and because the entire Wolf system is so small the three planet’s gravities interact with each other making their orbits change considerably with time. Professor Kane warns that this could mean that the climate on Wolf 1061c may be quite chaotic. While none of this makes Wolf 1061c sound like a good spot for a vacation home you should remember that life is very adaptable and the inhabitants of Wolf 1061c might find our Earth to be unbearably dull.

Professor Kane hopes to learn even more about Wolf 1061c when the new James Webb space telescope is launched in October of next year (2018). The examination of nearby extrasolar planets is one of the jobs the Webb telescope was designed to carry out so we should soon know even more about Wolf 1061c. The last two decades have been very interesting times for the planet hunters and let’s hope that the next two decades are even more exciting. To learn more about Professor Kane’s work the link below will take you to San Francisco State University’s news story about Professor Kane.

http://news.sfsu.edu/news-story/sf-state-astronomer-searches-signs-life-wolf-1061-exoplanet

 

 

After 175 Years of Mystery, Hyoliths have finally been Classified

Just this week an article has been published in the scientific journal Nature that clears up a problem that has plagued paleontologists for over 175 years. The paper by Joseph Moysiuk and Jean Bernard Caron of the University of Toronto along with Martin R. Smith of Cambridge University examined over 1500 specimens of Hyoliths, a rather common Paleozoic marine fossil whose shell resembles an ice cream cone with a lid on top and a spine coming out each side, see picture below.

A Fossil Hyolith

Because only the hard parts of extinct animals are usually preserved the exact kind of animal that lived inside the Hyolith shell remained a mystery. The most common guess was that Hyoliths were a mollusk, that they were either a snail or clam of some kind. However, using specimens from the famous Burgess Shale formation in British Columbia Professor Moysiuk et al succeeded in finding enough of the soft tissue of Hyoliths to be able to determine their feeding mechanism and it turns out that Hyoliths are not mollusks at all but instead are related to Brachiopods, a ancient and very common type of fossil but a phylum which today contains only a few rare species. See the picture below for a reconstruction of a Hyolith.

What a living Hyolith looked like

Compare this to a modern Brachiopod.

Internal structure of a Brachiopod

Whereas Brachiopods attach themselves to the sea bottom by means of a fleshy “pedicle” the Hyoliths seem to have pushed their conic shell into the sand and raised themselves up on their two spines. Because of this difference the scientists maintain that Hyoliths are related to the Brachiopods within a larger group called Lophophorates instead of being a Brachiopod.

The small tentacles reaching out of the Hyolith is the lophophore, the feeding structure common between the Hyoliths and Brachiopods and which gives the larger group its name. If you’d like to read an article in Sci-News about the work of Professor Moysiuk et al click on the link below.

http://www.sci-news.com/paleontology/hyoliths-cambrian-lophophorates-04531.html

I have two specimens of Hyoliths in my fossil collection, along with thousands of Brachiopods so this discovery by Professor Moysiuk et al is of particular interest to me. Like Dinosaurs and Trilobites I think that the more we learn about the animals that once lived on this Earth the more fascinating they become.

Maybe one day I’ll get to do a post on Nidulites, a rarer and more mysterious Paleozoic marine fossil of which I have about a dozen specimens. Till then.

 

 

 

Astronomer Predicts a Nova Eruption for first Time

Scientists make predictions, that’s how we know that our models are correct. If we can forecast that something will happen before it happens we must have a good idea of just what’s causing it to happen.

In my blog back on January the first I mention the total solar eclipse that’s going to happen on the 17th of August of this year and scientists have been predicting eclipses now since the time of the Roman emperor Claudius.

A few predictions have been some of the greatest moments in the history of science, such as when Edmund Halley predicted that a comet would return or when Paul Dirac predicted the existence of Anti-matter. Just a few years ago the discovery of the Higgs boson confirmed a prediction made by Peter Higgs back in the 1960s.

Now Astronomer Lawrence Molnar of Calvin College in Grand Rapids Michigan is making the first ever prediction of the eruption of a Nova, the explosion of a particular star system. The star system in question is called KIC 9832227, a 12th magnitude system in the constellation in the of Cygnus. The system consists of three stars, two of which form a contact binary, that is two stars that are so close to each other that they are “kissing”. See picture below.

Star Merger Geometry. L. Molnar, Calvin College

Professor Molnar and his team have been studying KIC9832227 for many years now and have noted an acceleration in the orbit period of the two stars, an acceleration which is increasing exponentially. Based on these observations Professor Molnar predicts that in 2022, give or take a year the stars will merge into one and that the resulting explosion will make the 12th magnitude system temporarily visible to the naked eye, a new star or Nova will appear briefly in our night sky.

While not as spectacular as a Supernova, where a star 10 or more times as massive as our Sun explodes in a fireball as bright as an entire Galaxy this is the first time anyone has been bold enough to predict a date on when a nova will occur. I hope that five years from now I get to see KIC 9832227 as it goes Nova. If it does Professor Molnar will have joined the ranks of Halley and Dirac and many others whose predictions have done so much to advance human knowledge. You can read an article on Professor Molnar’s work at Sky and Telescope Magazine by clicking on the link below.

http://www.skyandtelescope.com/uncategorized/stars-en-route-to-merger/

Before I go I want to also mention a new, and I think very beautiful picture of our Earth with the Moon that has been taken from orbit around Mars by NASA’s Mars Reconnaissance Orbiter.

Earth and Moon as seen from Mars- NASA Picture

If you’d like a better picture check out the article at Space.com by clicking below.

http://www.space.com/35252-earth-and-moon-from-mars-photo.html

P.S. I finally got around to making a unique header image for Science and Science Fiction. I hope you like it!

NASA Selects two new deep space missions to Asteroids. Meet Lucy and Psyche

Two days ago on January the 4th, NASA selected two new missions as a part of their discovery program for the exploration of deep space, away from Earth orbit that is. The new missions are named Lucy and Psyche and will carry out detailed examinations of a range of asteroids not yet studied. To read NASA’s announcement of the missions click the link below.

https://www.nasa.gov/press-release/nasa-selects-two-missions-to-explore-the-early-solar-system

NASA Deep Space Missions. Lucy (Left) and Psyche

Since I’m more interested in the Lucy mission I’ll talk about Psyche first. The Psyche spacecraft will travel to the unusual asteroid 16Psyche. The thing that makes 16Psyche so different, from measurements made here on Earth, is that it has a much higher content of Iron and Nickel than the asteroids we visited so far. In fact it looks a great deal like what we believe the core of our own planet is.

Astronomers have for over a hundred years speculated that the asteroid belt is actually another planet that failed to form because of the gravitational effects of massive Jupiter next door. If so then 16Psyche may be the core of that failed planet and by studying it we may learn something about how planets form as well as something about the core of our Earth.

On the other hand the Lucy mission intends to visit no less than seven different asteroids in the areas of space know as the Jupiter Trojan positions. The Trojan positions have always fascinated me; they are in fact the only stable three body solutions to Newton’s equations of planetary motion Solutions that were discovered by the French mathematician Joseph-Louis LaGrange in his search for a general solution to the “Three Body Problem”.

You see, although when Newton’s laws are applied to a star and a single planet they quickly lead to a nice simple function as a solution, when you add in the gravitational effect of a second planet, a third body, there is in general analytic no solution. After Newton’s death LaGrange and other mathematicians searched for solutions to the three body problem and even today there is work being done on the problem.

So, if there is no general solution how do astronomers calculate when an eclipse will occur, or when a comet will appear in the sky or how did they calculate the trajectory of the Voyager 2 spacecraft as it went past four planets. Well you do it a tiny bit at a time, over and over again.

This was an assignment I had to do in Graduate school. You see, if you know the positions and momentum of the planets today you can calculate what their positions will be, let’s say tomorrow. Then, using Newton’s laws of Gravity, you calculate how their new positions change their momentum. Then you just repeat the whole process over and over again.

This is the sort of calculations that computers are good at, that’s how I did it in Grad school. But back in LaGrange’s day a person had to do all that arithmetic and it would take years! My hat is off to those gentlemen.

Monsieur LaGrange was able to find five particular solutions to the problem (See Picture Below) and these are know as LaGrangian points in his honor. But only two of these positions are stable, L4 and L5 and these have become known as the Trojan positions because Jupiter has acquired a number of asteroids at it’s L4 and L5 positions. Asteroids which have been named for characters in Homer’s Iliad with L4 being the Greek camp and L5 being the Trojan camp.

LaGrange Points

Getting back to the Lucy mission. Expected to launch in 2021 Lucy will flyby the main asteroid belt member 1981EQ5 in 2025 on it’s way to the Greek camp (L4) where it will encounter four different asteroids in 2027 and 2028. Lucy will then loop back around Earth before headed back to the Trojan camp (L5) for a final encounter with the dual asteroid Patroclus/Menoetius in 2033. This is going to make Lucy one of the longest and certainly most complex missions ever attempted. A lot to look forward to in the years ahead.

 

 

Welcome to 2017. What to look forward to in Science in the coming Year

Well it’s 2017 and I thought it might be nice to take some time to see what scientific discoveries and achievements we can expect in 2017.

Science in 2017

For me the most exciting event may be the upcoming TOTAL ECLIPSE of the SUN going across the USA on August the 17th. The path of totality is pretty narrow but it goes from sea to shining sea so if you really want to see it you only need to drive a day or two to get there. Here’s a link to a site giving all the details.

http://www.eclipse2017.org/2017/path_through_the_US.htm

Other Space events we can look forward to include the Cassini’s spacecraft’s final orbits through Saturn’s rings and it’s final plunge into the planet itself. Cassini has already given us so many discoveries but I’m sure there will be a few more to come.

Also coming up this year will be a Chinese unmanned Lunar mission which will hopefully bring back some samples making China only the third nation to bring back pieces of the Moon. China also plans on continuing their missions to their new Tiangong-2 space station including their first unmanned resupply vehicle the Tianzhou-1.

Meanwhile NASA is continuing development of their Space Launch System (SLS) which will eventually be the biggest rocket ever built, a bit bigger than the Saturn 5. The actual first launch of the SLS is scheduled for early in 2018.

Commercial development of space will continue as Space X and Orbital Science continue to resupply the International Space Station. Additionally Space X and Boeing will continue development of their manned spacecraft including unmanned test launches. The first manned missions for both Space X and Boeing are scheduled for early 2018 under NASA’s Commercial Crew Development Program. Space X also intends to perform the first re-launch of one of their previously used Falcon 9 rockets in the first half of 2017 along with the first flight of their Falcon Heavy rocket.

In Physics of course there’s the possibility of new discoveries coming from the Large Hadron Collider (LHC) at CERN. As the world’s largest and most power scientific instrument the LHC in well into it’s second full scale run after completing an upgrade in 2015. The LHC’s initial run only gave us the confirmed detection of the Higgs Boson and with its increased power maybe this year the LHC will finally provide firm evidence for, or against Supersymmetry.

Another series of experiments going on at CERN is the Alpha experiment to study anti-hydrogen. The Alpha team have made great progress in containing and cooling anti-protons and positrons, allowing them to form actual atoms of anti-hydrogen. Anti-matter, just like in Star Trek! The researchers are looking for some tiny difference between anti-hydrogen and normal hydrogen, a difference that could help to explain why our Universe appears to be made almost entirely of matter only.

There will surely be great discoveries in the fields of Paleontology and Archeology as well but it’s hard to predict just which team of researchers will make the big finds. There’s a element of luck in finding fossils and relics as you can imagine.

So we should have a lot to look forward to in the coming months. Scientific progress can sometimes be expected, but just as often you cannot predict what amazing new discoveries will be made. Of course that’s a big part of the fun. I’ll keep you informed of anything interesting I hear about.

 

Feathered Dinosaur Tail encased in Amber!

Remember in the movie Jurassic Park where Richard Attenborough tells Sam Neil et al that his scientists obtained Dino DNA from prehistoric mosquitoes that had been encased in amber. Well wouldn’t it be better just to have the dinosaur itself be encased in amber, or at least a part of one. Well it’s happened, a Chinese paleontologist named Xing Lida found the remarkable specimen in an amber market in northern Myanmar.

Feathered Dinosaur Tail encased in Amber

The specimen is just a portion of the tail of a very small dinosaur, and it’s covered in feathers. Now, it’s not a bird, X-rays revel that the tail bones are arranged differently than those in birds. In fact paleontologists have identified the fragment as belonging to a member of the coelurosaurian group and therefore a relative of the Mighty T-Rex and the well known velociraptors. Although this animal probably only grew to the size of a small bird.

Artists Impression of Bird sized Dinosaur

Researchers haven’t been able to obtain any DNA but they have found soft tissue and decayed blood. This specimen has already given scientists a better idea of how dinosaurs, at least some, where covered in feathers rather than scales making them better able to control their body temperature and could provide the final proof that at least some dinosaurs were warm blooded.

Looking for ordinary fossils is like looking for a needle in a haystack but trying to find such spectacular specimens in amber is certainly needle in a haystack squared. Nevertheless you can be confident that dino hunters out there will be on the lookout and before to long maybe they will find that one specimen that does give us our first actual sample of Dino DNA.

P.S. A couple of posts back I talked a little bit about Cosmic Inflation after the Big Bang and how some cosmologists, and me, think that a simpler model is to look at the Big Bang as a Big Bounce from a previously contracting Universe. Well, Nova Next from PBS just released an article which goes deeper into that very subject. If you’re as interested as I am you can check it out by clicking below.

Did the Universe Start with a Bounce Instead of a Bang?

Batteries and a farewell to John Glenn

I have something really exciting to talk about today; batteries! What’s that you say, batteries aren’t exciting. Well, consider this, how much time do you spend recharging the battery in your smart phone and how often are you not able to get the latest scores from it because your battery is low.

Think of how many more electric cars there’d be on the road today if they could go further than a hundred miles before having to spend six hours or more recharging. Over the last two decades solar and wind power production technology has made rapid progress but green energy is still being held back by the problem of storing that energy for use during the night or when the wind is calm. The only solution at present is a huge bank of batteries that costs more than the solar arrays or wind turbines producing the energy.

The plain fact is that over the past one hundred years to only real advance in battery technology is the development of the Lithium battery which we all know from the news are prone to catch fire if you ask them for just a wee bit too much current. Really battery performance has become the limiting factor in the progress of many technologies that are otherwise ready to emerge into our daily lives.

Which gets me back to where I started. I have something really exciting to talk about today; batteries!

The first new development I’d like to discuss comes from a story in the magazine of the Institute of Electricians and Electrical Engineers, IEEE Spectrum and reports on research into Lithium-Sulfur batteries. Lithium Sulfur has the potential ability to hold five times the energy of current Lithium-Ion batteries but their performance has so far decayed rapidly every time they are recharged. The new research is led by Professor Guihua Yu at the University of Texas at Austin and has succeeded in encapsulating the Sulfur electrodes in polypyrrole-manganese dioxide nanotubes. While that is a bit beyond the chemistry I learned it has succeeded in reducing the loss of battery performance to 0.07 percent per charge cycle.

There are still some problems to be resolved, especially the tendency of the Lithium and Sulfur to develop dendrites that can short circuit the battery but hopefully Lithium Sulfur batteries will soon reach the stage where their greater capacity can attain widespread use.

To read the original article in IEEE Spectrum click on the link below.

http://spectrum.ieee.org/nanoclast/semiconductors/materials/novel-electrode-structure-provides-new-promise-for-lithiumsulfur-batteries/?utm_source=nanotechnews&utm_medium=email&utm_campaign=120616

The second story come from Merry Olde England where the daily express is reporting on the research of Dr. Brendan Howlin from the University of Surry and actually deals with what is claimed as a major breakthrough in the development of Supercapacitors rather than familiar chemical batteries.

Now, the chemical compounds that ordinary batteries use to store energy simply do not react as fast as electronic components like a transistor, that is why batteries take to long to charge and why their discharge currents are so limited. A capacitor however stores its energy in electric charge, actual electrons, and even a huge capacitor back can be fully charged, or discharged in less than a second. Until now however the amount of energy a capacitor could store was tiny compared to that of a chemical battery. Capacitors were great for small amounts of energy in an instant but simply could not hold enough energy for phones or drones or similar uses.

Doctor Howlin however, reports that he has increased the amount of energy his supercapacitors can store by a factor of 1,000-10,000 using the same materials used in soft contact lenses. If this is true, Doctor Howlin’s capacitors could allow electric cars to travel just as far as gasoline powered cars and be recharged just as quickly as pumping gas. Elon Musk of Tesla electric cars has often said that supercapacitors with this performance are the breakthrough electric cars have been waiting for.

To read the original story from the express click on the link below.

http://www.express.co.uk/news/science/740174/Battery-breakthrough-supercapacitor-technology-revolutionise-mobile-phones-electric-cars

P.S. Before I go today I have to take a moment to mention the passing on Thursday of John Glenn. I was seven years old and in second grade on February 20th, 1962 when John became the first American to orbit the Earth. My class at Thomas Holme School was allowed to go to the school auditorium to watch the mission on a small TV placed on the auditorium stage. I may not have been able to see much but I will never forget that. There can never be any doubt that John Glenn was an example of the best of what the Human Race can be. Godspeed John Glenn.

John Glenn
John Glenn and Friendship 7

This Week in Space

Several news stories dealing with space exploration came out this week but didn’t receive much attention so I decided to take a moment to highlight them.

The first item on my list is the beginning of the final, and perhaps most exciting phase of the Cassini spacecraft’s mission to the planet Saturn. The Cassini mission is expected to end in September of next year with Cassini plunging into Saturn’s atmosphere but starting this week the spacecraft has begun a series of ring grazing orbits that will be followed by orbits closer to the giant planet than anything ever attempted.

In the picture below the gray lines indicate the ring grazing orbits while the blue lines are the planet grazing orbits. These orbits are dangerous, a collision with debris from the rings could easily destroy the spacecraft which is why NASA has waited till the end of the mission to attempt them. The possibility of close up observations of the ring system is too great a chance to miss however.

Cassini Spacecraft Ring grazing Orbits

Hopefully in the next several weeks NASA will be able to release spectacular images of Saturn’s Rings. If you’d like to know more about the Cassini mission here’s a link to the official NASA website.

https://www.nasa.gov/mission_pages/cassini/main/index.html

Another interesting NASA story is the awarding of a contact to the California based company Space Systems/LORAL. I used to work for them back in the 1980s designing antennas for geostationary communications satellites. The contact is for the development of a satellite refueling spacecraft called the Restore-L spacecraft bus.

Refueling satellites in space is an idea that’s been talked about since the 80’s and I’m glad to see they are finally getting around to doing it. You see, all the satellites we put into space to sent you your direct TV signal or complete your overseas telephone call or keep an eye on the hurricane brewing in the Atlantic have only a limited amount of fuel to keep them in the proper orbit and, just as importantly pointing in the right direction. Once their fuel is gone these technological miracles costing hundreds of millions of dollars are just trash.

Having an unmanned spacecraft that could go to these satellites and refuel them is another step on the road to building the infrastructure of space, turning low Earth orbit (LEO) into a work environment of benefit to everyone here on Earth. If you’d like to read more about Restore-L here’s a link to the story.

http://perfscience.com/content/2145143-refueling-mission-spacecraft-project-wins-nasa-approval-127-million-payment

A closely related story is the selection by INTELLSAT, the international consortium managing most of the world’s communications satellites, of Orbital ATK as the provider for a Mission Extension Vehicle-1, MEV-1. The objective of the MEV-1 will be very similar to NASA’s Restore-L spacecraft in that the MEV-1 will go to satellites already in orbit and either refuel or repair them, thereby extending their useful life.

These twin spacecraft, are scheduled to be developed over the next three to four years and together they will provide a new capability for mankind in space. To read the original story from Spacecraft Insider click on the link below.

http://www.spaceflightinsider.com/organizations/orbital-sciences-corp/intelsat-taps-orbital-atks-mev-1-extend-life-orbiting-satellites/

 

 

 

 

Was Einstein Wrong??? Is the Speed of Light not Constant???

Over the past week there have been a series of news articles reporting that two physicists, Niayesh Afshordi at the University of Waterloo in Canada along with Joao Magueijo at the Imperial College of London have proposed that Einstein may have been wrong. The Speed of Light may not be constant, right after the Big Bang it may have been a lot faster.

Do you want the short answer or the long answer. For the short answer read the next 3 paragraphs, for the long answer keep going. If you want to read the news report use the link below.

http://www.csmonitor.com/Science/2016/1128/Einstein-s-speed-of-light-theory-tested-Did-he-get-it-wrong

What Afshordi and Magueijo were looking for is a solution to the problem in cosmology of just how the early universe was in such good thermal equilibrium as is evidenced by the Cosmic Microwave Background, CMB see picture below. For different objects, at different initial temperatures to come into thermal equilibrium requires some kind of contact between those different objects. In this case we are taking about the entire early Universe which is flying apart at the speed of light and that ain’t good contact.

Cosmic Microwave Background from Plank Satellite
Cosmic Microwave Background from Plank Satellite

What Afshordi and Magueijo have proposed is that, in the Early Universe the speed of light was far greater than it is now allowing greater thermal contact by the process of radiation. Remember there are three ways for heat to flow: conduction, convection and radiation, well Afshordi and Magueijo’s model would make radiation a much more efficient process thereby eliminating the thermal contact problem.

The point to remember here is that this is all mathematics at present, no one has measured a different value for the speed of light. Afshordi and Magueijo do make a prediction of the scalar fluctuations in the CMB as an experimental check but at the moment this is all just a model.

Also, we’ve been here before. The problem of thermal equilibrium in the CMB goes back to the 1970s when Alan Guth of MIT proposed cosmic inflation as the solution. The idea of inflation was that, right after the big bang itself, and we’re taking pico-seconds here, a huge amount of energy was dropped into the universe causing it to expand faster than the speed of light so that a small section of the universe that was in thermal equilibrium became the entire universe that we see. For thirty years after Guth published his model inflation was a standard part of cosmology, I learned it, but no one has been able to figure out where all that energy came from so inflation is no longer quite so highly regarded.

To me however, this new idea of Afshordi and Magueijo is just kind of the opposite of inflation. Instead of having a small part of the universe after the big bang expand faster than the speed of light they increase the speed of light, in a sense making the early universe smaller. And they now have the problem of describing what made the speed of light so different, and what makes it so constant now? Kind of the opposite of Guth’s problem of where all that energy came from. I wish Afshordi and Magueijo luck but as I said, we’ve been here before.

Now I get to give my opinion. To me the reason the early universe was in thermal equilibrium right after the big bang was that it was in thermal equilibrium before the big bang. That’s right I’m one of those big crunch guys, that is I think that about 15 billion years ago, before the big bang,  the universe was collapsing at the speed of light. Eventually the universe collapsed as much as it could and then rebounded, that rebound is what we call the big bang. A universe that is collapsing is coming into greater contact and therefore will achieve thermal equilibrium before the rebound, giving it thermal equilibrium after the rebound.

Anyway, that’s what I think. I know this has been a bit of a long post but I hope you enjoyed it. Let me know what you think.