Space News for May 2023: Space X’s Starship rocket has its first test, the Voyager space probes will continue to operate until at least 2026 while the European Space Agency’s JUICE space probe had a little problem.

Did you watch it, the first test launch of Space X’s huge Starship launch system that is? Several YouTube channels streamed the entire flight, after all this was the first full test launch of the biggest, most powerful rocket ever built. The test was certainly exciting, but then failed tests are usually more exciting than successful ones.

The first test launch of the most powerful rocket ever built looked good, for a while. (Credit: Engadget)

As I watched that first test on April 20th, it seemed for a while as if everything was going pretty well but then, about a minute into the flight the announcer declared that 28 of Starship’s 33 first stage engines were still firing. That of course made me wonder what had happened to the other five engines. Then, about a minute later it became obvious that the rocket was beginning to tumble out of control and a little more than three minutes into the flight the engineers were forced to self destruct Starship in order to prevent it flying completely out of control and doing any damage to something on the ground.

The beginning of the end for Starship. Those failed engines began forcing the rocket off course and eventually ground control ordered a self destruct. (Credit: Reuters)

That didn’t prevent all of the damage at the launch site however. Those five engines that failed first must have exploded right at ignition, based upon all of the debris that was hurled as much as 20 meters away from the launch pad. The pad itself sustained the most damage including a large crater directly beneath it. So extensive is the damage to Starship’s launch facilities that it will take several months to repair them before another Starship test launch can take place. On the other hand, Space X certainly doesn’t want to attempt another launch before they’ve figured out what went wrong on the first one, and that may take longer than repairing the damage that occurred.

There were obvious signs of damage to the launch pad after Starship’s launch. Damage that will take time to repair before another test launch. (Credit: France 24)

Now every engineer knows that failures happen, especially on first tests. I’ve certainly had my share. Space X CEO Elon Musk knows that and did not expect 100% success. Before the test flight he declared that if the giant rocket only ascended past the launch tower he would consider it a partial success. Designing and developing a huge rocket like Starship takes a lot of time and effort and testing, it’s only a matter of time before they get it right.

The road to success is built on trial and failure, every engineer knows that! (Credit: Security Sales & Integration)

Much worse is when you’ve done all the design and testing and something goes wrong with the completed product, especially when that product is on its way to the planet Jupiter and there’s absolutely no way to send someone to repair it. That could have been the fate of the European Space Agency’s (ESA’s) JUICE space probe. I discussed the JUICE mission back in February, see my post of 25 February 2023 , as a mission to explore three of Jupiter’s large, Galilean moons in order to determine if there are oceans of liquid water beneath their icy surfaces. The JUpiter ICy moons Explorer or JUICE spaceprobe was launched on April 14th from the ESA’s launch facility in Kourou in French Guiana aboard an Ariane 5 rocket. JUICE’s launch was successful, and within hours the probe was on its way to Jupiter and talking to ground control.

Launch od the European Space Agancy’s JUpiter ICy moons Explorer (JUICE) mission. (Credit: CNN)

As the probe began to deploy its solar panels and instruments however a problem arose with the antenna for JUICE’s Radar for Icy Moons Exploration (RIME), the instrument that it was hoped would peer beneath the icy surface of the moons to confirm the existence of those oceans. Based on images sent back by the spacecraft the antenna had only unfurled to about one third of its full 16 meter length.

This image takes me back. Testing in an anechoic chamber of the antennas of the JUICE space probe. (Credit: SatNow)

The theory was that a release pin had gotten stuck preventing the antenna from completely deploying. The engineers at the ESA hoped that by using the probe’s course correction engines they may to able to shake the pin loose but they took their time to study the problem. Since JUICE would not reach Jupiter until 2031 the engineers knew that they had plenty of time to consider the problem and come up with a clever trick to fix the antenna.

The JUICE-RIME antenna stuck about halfway. Fortunately the engineers at ESA managed to shake it loose and it’s now ready to go. (Credit: Spacenews)

Turns out they knew what they were doing. After several attempts to fix the problem, each attempt showing a little improvement, the problem was solved when the engineers fired a ‘Non-Explosive Actuator’. The antenna immediately unfurled to it’s proper length.

The Rime antenna unfurling after engineers fixed it problem. (Credit: ESA)

On the other hand sometimes equipment and systems can be so well designed and built that they far exceed their original design goals. Arguably the two best examples of such extraordinary engineering are the Voyager 1 and Voyager 2 space probes.

The Voyager space probes have been exploring our Solar System, and now our Galaxy for over 45 years. They just keep going and going. (Credit: NASA)

First launched back in 1977, the Voyager spacecraft were designed to conduct flybys of the four gas giant planets in the outer solar system; Voyager 2 is still the only spacecraft to visit Uranus and Neptune. Once their original missions were completed however the two probes just kept working, sending back to Earth measurements of conditions in the outer solar system.

Real time data sent back from the Voyager 1 probe, still teaching us about the Universe after 45 years in space. (Credit: NASA)

And they are still working, forty-five years after launch both Voyager spacecraft have now entered interstellar space and are still sending back data, the first in situ observations we have of conditions between the stars. Still, nothing lasts forever and slowly but surely the energy provided to each Voyager by its three Radioisotope Thermoelectric Generators (RTGs) is decreasing. Someday the two Voyager probes will no longer have enough energy to radio their observations back to us and they will be lost forever. At launch the RTGs supplied each Voyager with 70 watts of power but the 88 year half life of the radioactive Plutonium has caused that output to decrease by around 30%.

A radioisotope thermoelectric generator or RTG. Radioactivity produces heat and heat can be converted to electricity. These units have provided the power the Voyagers need to keep working after 45 years. (Credit: Wikipedia)

In order to keep each spacecraft functioning for this long the engineers at the Jet Propulsion Labouratory (JPL) have been turning off all unnecessary equipment such as the cameras and heaters to save power. The power loss on Voyager 2 had become so great that it was thought that by the end of the year one of the probe’s five remaining instruments would have to be shut off, with the loss of all that priceless data.

When we lose power we can resort to candles. Voyager doesn’t have that option. (Credit: KSAT 12)

Fortunately those engineers at JPL are some of the best in the world and they came up with a clever idea. The Voyager power system contains a device known as a voltage regulator that’s intended to eliminate spikes and surges in the power coming from the RTGs. With the drop in power from the RTGs there’s now much less danger of that happening and if they shut off the regulator they’d save enough power to keep Voyager 2 running as is with five remaining instruments until at least 2026, almost exactly 50 years after its launch.

The Jet Propulsion Labouratory in California, home to many of the space probes that have explored our Solar System. (Credit: NASA

The Voyager spacecraft have discovered so much, taught us so much about our solar system and now the galaxy beyond and thanks to the engineers at JPL they can continue to do so, more than 30 years longer than anyone ever expected them to.

Leave a Reply

Your email address will not be published. Required fields are marked *