The Fields Medals, Mathematics version of the Nobel Prize have been awarded to a group of young Mathematicians.

Every field of scientific research has its own ‘highest honour’ the award that is given to those researchers who have made the greatest contribution in that field. For Physics, Chemistry and Physiology that award is of course the Nobel Prize but for Mathematics the highest honour is the Fields Medal, which are awarded just once every four years by the International Mathematics Union. The Fields Medals also differ from the Nobel in another way because they are given, not to older mathematicians for a lifetime of achievement but to mathematicians under the age of forty who are currently doing important and impressive work.

Although not so well known as the Nobel Prize the Fields Medal for Mathematics is every bit as highly regarded among scholars. (Credit: The Indian Express)

This year the Union announced on July 5th that they had chosen four young mathematicians for the award. The winners are Maryna Viazovska of the Swiss Federal Institute of Technology in Lausanne, aged 37, Hugo Duminil-Copin, 36 of the Institut des Hautes Études Scientifiques near Paris France, James Maynard, aged 35 of the University of Oxford in England and June Huh of Princeton University in New Jersey, USA, aged 39.

Only the second woman to be awarded the Fields Medal Maryna Viazovska is a numbers theorist who hails from the Ukraine but is currently working at the Swiss Federal Institute of Technology in Lausanne. (Credit: Nature)

Maryna Viazovska is only the second woman ever to receive the Fields Medal and she did so for her pioneering work in the stacking of equal sized spheres in dimensions higher than three. This problem of how to most efficiently stack spheres, sometimes also known as stacking cannonballs, was first considered by the great mathematician and physicist Johannes Kepler.  After considerable study Kepler decided, but couldn’t rigorously prove that the way soldiers stacked their cannonballs was the most efficient but the problem remained unsolved until mathematician Thomas Hales at the University of Michigan succeeded in 1998 with a 250 page proof.

The most efficient way to stack cannon balls may seem trivial, but a rigorous proof was not completed until 1998. Now mathematicians are trying to solve the problem in dimensions higher than 3! (Credit: International Mathematical Union)

In the years since Kepler mathematicians have become interested in spaces with more dimension than the normal, like the four dimensions of Einstein’s space-time. As you might guess problems like stacking spheres become more difficult with each added dimension. Back in 2016 Doctor Viazovska succeeded in finding the best solution in eight dimensions, calling her arrangement E8. Then, only a week later and with the help of four other mathematicians she used E8 to find the solution in 24 dimensions.

One page of Doctor Viazovska’a proof for 8 dimensions. It takes years of study and experience to be able to understand such complex mathematics. (Credit: YouTube)

Was it just luck that the solution in 8 dimensions allowed her to quickly find the solution in 24 dimensions? Doctor Viazovska doesn’t think so, she’s certain that there’s a connection and if she can find out what that connection is it may lead to more solutions in other dimensions.

How mathematics works in dimensions higher than the 3 we are aware of is a very hot topic right now. (Credit: Quora)

Meanwhile at Oxford University James Maynard is one of many mathematicians over the years who have fallen in love with prime numbers, those numbers like 7, 11 or 29 that can only be evenly divided by themselves or 1. Doctor Maynard’s work concerns the famous twin prime conjecture. That’s where, once you find a prime number, let’ say 11, the number just two later 13 is also very often another prime. This pairing has been known for centuries and as far as we know, goes on forever. (Remember since all even numbers can be divided by two, that makes two itself the only even prime, all other primes are odd.)

Oxford University’s James Maynard right where every mathematician wants to be, in front of a blackboard solving a problem. (Credit: YouTube)

As the numbers get bigger the density of primes gets smaller, for example there are 24 prime numbers between 0 and 99 but only 14 between 900 and 999. Despite the growing space between them in 2013 a mathematician named Yitang Zhang at the University of New Hampshire was able to prove that there was an infinite number of prime pairs and that the separation between them was always less than 70 million.

Prime numbers (Red) and Composite number (Blue) between 0 and 100. (Credit: Study.com)

Extending Doctor Zhang’s work what Doctor Maynard has succeeded in doing is to reduce that separation to less than 600. Additionally Doctor Maynard was able to show that there are an infinite number of primes that do not end in a 7. One more little piece in the puzzle of the most interesting group of numbers there is.

Currently the record holder for the largest Prime Number. Just thinking about a number that large makes my head spin. (Credit: Steemit)

On the other hand Doctor Hugo Duminil-Copin is a little more practical, in fact during college he had difficulty in deciding whether to be a mathematician or a physicist. Doctor Duminil-Copin’s research deals with the mathematics of what are known as phase transitions, a very complex subject indeed. Phase transitions are sudden, large-scale changes in the characteristics of a material, such as when liquid water freezes into ice.

Hugo Duminil-Copin having fun. (Credit: Institute des Hautes Etudes Scientifiques)

Phase transitions are also important in the magnetic properties of materials. Consider an ordinary bar magnet made of iron for example. The reason why a bar magnet is a magnet is because each of the atoms of iron in the bar is itself a tiny magnet, and if enough of those atoms are aligned in the same direction then the entire bar will become a magnet.

A piece of Iron or other magnetic material consists of millions of tiny Ferromagnetic Domains that normally point in many different directions, canceling each other out. In the presence of an external magnetic field those domains will line up, increasing the strength of the external field. This is a phase transition mathematically similar to the freezing of water into ice. (Credit: Material s Science and Engineering)

However, if that bar magnet is heated, then at a certain temperature, known as the Curie temperature, the atoms will start to alter their orientation, they will start to point in random directions once again and the bar will lose all of its magnetic properties. Also, if a bar of iron at a temperature above the Curie temperature is placed in an external magnetic field the atoms will line up and then, if the bar is cooled back below the Curie point, the atoms will freeze in place and the bar will then become a permanent magnet.

Above its Curie temperature the atoms in a magnetic material become so energetic that they can no longer maintain the lining up that makes a permanent magnet. (QS Study)

The standard model for this phase transition from non-magnet to magnetic, and vice versa, is known as the Ising model after German physicist Ernst Ising who solved the one dimensional version of the problem in 1924. The two dimensional version of Ising’s model wasn’t solved until 1944 and the three dimensional version, obviously the one physicists are most interested in, has never been exactly solved. To date only approximate solutions, often generated by computers, are available, but these approximations leave several very important questions unanswered.

What Doctor Duminil-Copin has done is to connect the problem of magnetic phase transitions to the better understood process of percolation of a liquid through a porous material. By doing so Doctor Duminil-Copin was able to show that some of the characteristics of the two dimensional Ising model are still true in three dimensions, in particular that while the phase transition may be rapid, it is still a continuous process, not a discontinuous jump like water into ice.

As a kid I have to admit that I was fascinated by how the old fashioned coffee Percolator worked. Letting hot water drip through coffee grounds they dissolve some of the coffee flavour. (Credit: Homegrounds)

Finally when June Huh was growing up in California and South Korea he never expected to become a mathematician, in fact he wanted to become a poet. When his writings failed to get published however he decided to major in physics and astronomy at Seoul National University, hoping to become a science writer. In his senior year of college however he met a previous winner of the Field’s Medal, Doctor Heisuke Hironaka who was teaching a course in algebraic geometry. It was that course that turned Doctor Huh into a mathematician.

June Huh at the blackboard. Mathematicians just have all the fun! (Credit: The Korea Economic Daily)

Doctor Huh’s field of research is known as combinatorial analysis, basically studying the different ways that a number of objects can be put together to form a single system. One well known method of calculating these combinations replaces each object in the system with a colour and considers the colour combinations using a set of functions called chromatic polynomials. By calculating these polynomials mathematicians gain insight into the possible combinations of a set of objects and Doctor Huh has found success in his calculations by using some of the tools he learned in algebraic geometry from Doctor Hironaka.

How many different, three letter words can you make out of A, B, and C! Well to do that problem in combinatorial analysis you might want to use a Tree Diagram. (Credit: ResearchGate)

So that’s a brief glimpse at the work of this year’s Field’s Medal winners in Mathematics. Each recipient in their own way is extending of boundaries of mathematics and just simply giving us a better understanding of the way things work. 

James Webb versus the Hubble Space Telescopes, what’s the difference and just how much better are the images we’re going to get from the Webb.

I’m certain that by now everyone reading this post has seen those first four images taken by the James Webb Space Telescope (JWST) that were released by NASA on July 12th. The pictures are certainly beautiful, easily evoking the awe and sense of mystery that the Universe deserves, and it’s been reported that when NASA’s Chief Astronomer first saw them he was almost brought to tears. The question is, are they really that much better than the images provided by the Space Telescope (HST) and what new wonders of the Universe will JWST reveal that HST simply couldn’t.

The very first image pubically released by the James Webb Space Telescope (JWST) was a repeat of Hubble’s famous ‘Deep Field’ image showing thousands of galaxies from more than 10 billion light years away, and therefore more than 10 billion years ago. (Credit: NASA)

Let’s just start by comparing the size of the two telescopes and for any telescope the size that matters most is the area of the primary objective, the big lens or mirror that gathers in light for the telescope. The more light it gathers the dimmer the objects that any telescope can see. For the HST the main mirror was a nice circle with a diameter of 2.4 meters giving it a collecting area of about 4.5 m2

JWST (l) and HST (r). They may not look very much alike but while HST has already revolutionized our view of the Universe and there’s little doubt JWST will do the same over the coming years. (Credit: NASA)

Calculating the area of JWST’s objective is a bit more challenging because JWST actually has 18 hexagonal mirrors each of which can have its orientation adjusted in order to maximize the light gathered by them all. The total collection area for JWST works out to around 28.1 m2, so JWST can therefore collect about 6.25 times as much light as HST. That increase in light gathering alone will allow JWST to see things in the Universe that HST simply couldn’t.

JWST’s mirror size (r) may not be a easy to calculate as HST’s (l) but it’s bigger and will allow even dimmer and farther distant objects to be studied. (Credit: NASA)

JWST is about more than just size however for the telescope has been designed to look at the Universe not in visible light but rather in the infrared portion of the electromagnetic spectrum. And in order to see in the infrared JWST had to be placed, not in an orbit around the Earth but at a position 1.5 million kilometers away from our planet called the Lagrange 2 or L2 point where the gravity fields of Earth and the Sun perform a balancing act that will keep JWST at the same place relative to the Earth. At that distance the infrared light emitted by the Earth is more manageable.

JWST will be positioned at a point known a Lagrange 2 or L2 where the combined gravities of the Sun and Earth produce a stable orbit about 1.5 million kilometers from our planet. (Credit: BBC Sky at Night Magazine)

To really protect itself from infrared light from both the Earth and Sun however JWST has been provided with a sunshield the size of a tennis court. Thanks to its sunshield the telescope and instruments of JWST will be kept at a temperature lower than -223.2 degrees Celsius. That low temperature will allow JWST to see well into the infrared, again seeing objects that HST never could.

JWST’s Sunshield willprevent the heat of the Sun from effecting delicate instruments, keeping those instruments at a cool -223.2 degrees Celsius. (Credit: NASA)

That’s important because astronomers are currently interested in four areas of astronomy that can only be studied in the infrared. One of these areas is the atmospheric composition of all of the extra-solar planets that have been discovered over the last 20 years. The chemical elements present in a planet’s atmosphere can tell us a lot about its suitability for life. The old Star Trek line about an ‘Oxygen, Nitrogen atmosphere’ is really true, such planets are more hospitable for life and NASA is very excited about the possibility of finding such a planet. Since a planet is much cooler than its sun the spectral lines of the chemicals in its atmosphere can only be studied in the infrared. In fact JWST has already begun this effort by making its first images of the TRAPPIST-1 system.

The first planet observed by JWST was WASP-96-B and the spectra of the planet’s atmosphere indicates that there is water vapour there. (Credit: NASA)

Another area where the infrared has become important is in the stellar nurseries where stars are born. You remember the famous HST image of ‘the fingers of creation’ showing a huge gas cloud with several big and bright baby stars that have just begun to shine. The problem with the HST images is that the gas clouds forming the stars are opaque in visible light and end up obscuring the actual birth of the stars. That interstellar gas is transparent in the infrared however so the JWST will be able to see right through them to get a much closer look at the very earliest stages of a star’s life.

HST’s famous image of the ‘Pillars of Creation’ (l) and JWST’s version (r). JWST can see right through the gas clouds to where the stars are being born in greater detail! (NASA)

Perhaps the most important reason for the JWST being designed to operate in the infrared is because of the expansion of the Universe and how it causes the light from the furthest galaxies and stars to be red shifted. This phenomenon is known as the Doppler shift and it’s the same thing that causes a police siren to have a higher pitch when it’s coming towards you and a lower pitch as it’s moving away.

HST’s ‘Deep Field’ (l) versus JWST’s (r) these are galaxies being born 10 billion years ago. Is it any wonder that JWST has astronomers excited. (Credit: My Modern Met)

Since the entire Universe is expanding, the galaxies are moving away from each other, so the Doppler effect causes the light from distant galaxies to become red shifted. Since the farthest galaxies are also the oldest, because it take so long for their light to reach us at the speed of light, the light from the first galaxies to form is actually shifted all the way into the infrared.

Because of the Doppler Shift the light from the earliest galaxies is shifted all the way into the infrared where HST and ground based telescopes cannot see them. That’s perhaps the most exciting aspect of JWST because in some ways we have no idea just what it might find. (Credit: Sketchplations)

That limitation meant that HST could only see galaxies as far back as one billion years after the Big Bang, but it is expected that JWST will be able to see back to 300 million years after the Big Bang, a time when most theorists think the first stars were forming. In that way JWST will help resolve some of the question we have about how the Universe went from the enormously hot fireball of the Big Bang to the galaxies and clusters of galaxies we see today.

Because of the expansion of the Universe HST cannot see anything further back than 1 billion years after the Big Bang but JWST will see further, back to 300 million years after the Big Bang. (Credit: ZME Science)

Finally, in just the last few years astronomers have discovered the first few Brown Dwarf stars, objects that do not have enough mass to ignite hydrogen fusion like a true star but that are much larger than any planet, see my post of 22 September 2021. As Brown Dwarfs continue to contract however they do get warm, and the energy released by that contraction is emitted as infrared light, just perfect for the JWST to observe. At present only a very few Brown Dwarfs are known but it is hoped that JWST will find more, enough for us to learn more about their nature and enough for us to estimate how many there are out there wandering between the real stars.

Brown Dwarfs are a barely studied class of celestial objects because what little light they emit is in the infrared. It is hoped that JWST will allow us to learn a great deal more about these objects. (Credit: Earthsky)

That’s just a brief overview of what astronomers hope to learn by using the JWST. Who knows however, perhaps ten, fifteen years from now the thing that JWST is best known for may be something that we can’t even imagine now.

One can only hope!

Archaeology News for July 2022: The Impact of Climate Change on the Study of the Past.

Whether you call it Global Warming or Climate Change it’s an obvious fact that environmental conditions throughout the world are getting worse. And as the climate changes it is having an effect on almost every aspect of human life, even archaeology. Here are a couple of stories about how those changing conditions are actually helping archaeologists in their efforts to study the ancient past.

Human caused Global Warming is an undeniable fact, but could it actually be of benefit to the science of Archaeology? (Credit: Wikipedia)

One of the clearest signs of climate change is the severe and persistent droughts that are happening in many places across the globe. The dry conditions in western North America may get the most news coverage but the droughts in eastern Africa and the Middle East are every bit as brutal. As in western North America the lack of rain has led to thousands of square kilometers of arid soil, dried up riverbeds and historically low levels in lakes and reservoirs. The emptying of those rivers, lakes and reservoirs is now unveiling land that had been underwater for decades if not centuries or more and in the Middle East that land could have been the site of ancient human habitations dating back to the very beginnings of civilization.

The two rivers of the Tigris and Euphrates have supplied many civilizations of the past with the water they needed to exist in that arid part of the world. Today the Mosul Dam on the Tigris supplies Iraq with much of its water and electric power as well. Thanks to Climate Change water levels in the Mosul reservoir have dropped to the lowest amounts ever seen. (Credit: Landsat Image Gallery – NASA)

That’s exactly what happened recently at the Mosul reservoir, a part of the Tigris River system in northern Iraq. The prolonged drought has dropped water levels in the reservoir so much that an ancient city has appeared like magic along the banks. As quickly as the remains of scores of buildings were discovered back in January of 2022 a team of Kurdish and German archaeologists descended on the site to investigate and study the remains. Working swiftly the researchers gathered and documented what they could before the annual spring rains resubmerged the site.

As the water level in the Mosul reservoir has dropped an ancient Bronze Age city has risen from the waters making the archaeologists happy if not anyone else! (Credit: 9GAG)

What the archaeologists found was a large urban complex complete with defensive walls several meters high, a palace and several other large buildings dating to the late Bronze Age, ca. 1550-1350 BCE. At that time the region around the reservoir was a part of the Mittani Empire, one of the many city-state based powers that existed in Mesopotamia during the Bronze and Iron ages. The archaeologists even think that the site could be the city of Zakhiku an important center of Mittani culture that was destroyed in an earthquake around 1350 BCE.

One of the many now forgotten nations that existed in Mesopotamia, Mitanni was a great power in its day. (Credit: Weapons and Warfare)

While the archaeologists unearthed a large number of artifacts during their two-month excavation probably the most important discovery was the unearthing of ten ceramic jars containing more than 100 cuneiform tablets. Those tablets are now awaiting deciphering and who knows what information they could contain, whether it be the history of the city or just lists of stored agricultural products like grain or livestock.

Some of the Cuneiform tablets found at the city in the Mosul reservoir. Who knows what ancient secrets they will reveal when translated. (Credit: Euronews)

After two months of excavations the site was carefully protected by the archaeologists before the water level in the reservoir covered it once more. The buildings and walls were covered with tight fitting plastic sheets and held in place by a layer of gravel. These precautions will hopefully preserve the site until the next time the water level at Mosul gets low enough for further excavations to be carried out, which, thanks to climate change could be very soon.

As the annual spring rains caused water levels to rise the archaeologists covered the ancient Mitanni city in order to preserve its remains until the next time climate change induced drought brings it back to light. (Credit: ZME Science)

Not coincidentally the same thing is happening in western North America where drought has caused the water level in many large reservoirs to drop to record levels. The land that is being revealed is yielding surprising and in some cases grisly remains from the past. At lake Meade near Las Vegas for example the bodies of three individuals have been found who are thought to have been murdered and dumped in the lake back in the 1950s-60s when mobsters fought over the casinos of Nevada.

Lake Meade, the largest artificial lake in the US and source of water for tens of millions of people, is disappearing before our eyes. (Credit: Boulder City Review)

More important, if not more salacious, are the archaeological sites that have reemerged from Lake Powell, also along the Colorado River. In pre-Columbian times that region of what is now Utah was inhabited at different times by native Americans of the Pueblo, Paiute, Hopi and Navajo peoples. When the dam for Lake Powell was built it was feared that dozens if not hundreds of ancient sites had been lost forever. In fact archaeologists of that time organized a hasty survey of those sites called the Glen Canyon Project in the hopes of recording some of the remains there before they disappeared forever.

For thousands of years the Native American peoples of the desert southwest built small cities along the fertile valley of the Colorado River. Some of this archaeological sites were submerged when the dams were built that formed Lake Meade and Lake Powell. (Credit: Grand Canyon Trust)

Turns out it wasn’t forever. Thanks to climate change and the severe drought throughout the western US about one quarter of the sites cataloged in the Glen Canyon survey have already been rediscovered and are currently being studied. The archaeologists involved in the research have been mostly astonished by how well preserved the sites are and are hopeful that this time the evidence of the past will be adequately investigated.

One of the archaeological sites recently revealed by the falling water levels of Lake Powell. Dozens of such sites have already been re-discovered and hopefully many more can also be surveyed. (Credit: KNAU)

We all have heard the old saying, “Every cloud has a silver lining”, well perhaps the reemergence of ancient human habitations once submerged in modern reservoirs may be the silver lining of climate change, but that cloud around the silver lining is awfully big and black.

Space News for July 2022: Artemis 1 has completed its Wet Dress Rehearsal and has been given clearance for a launch as early as late August or early September.

Wet Dress Rehearsal (WDR) for a space system is a test intended to see if the rocket and all of its auxiliary systems can be fully loaded with fuel and oxidizer and if all of the electrical systems can be powered up and readied for flight. For the Space Launch System (SLS) the WDR also includes all the systems aboard the Orion man capable space capsule. In fact the WDR includes all of the steps that take place in an actual launch countdown right up to the last few seconds before ignition, usually about T minus thirty seconds. Back in April the Space Launch System, the rocket that NASA plans on taking American astronauts back to the Moon, failed to complete its WDR several times and had to be returned to the Vehicle Assembly Building (VAB) for repairs.

The Wet Dress Rehearsal (WDR) for the Space Launch System (SLS) with its Orion Man capable capsule. (Credit: NASA)

Those repairs were soon accomplished and once again the SLS was rolled out to Pad 39B at Kennedy for a second attempt at the WDR, which began on the 18th of June. Although there was a problem during the test with a leaky quick disconnect valve on the hydrogen intake to the rocket’s core stage the NASA engineers were able to work around the problem. The rocket itself went through the test without any difficulty and the WDR was concluded on June 20th and officially declared a success. According to the Artemis Mission Manager Mike Sarafin, “I would say we’re in the 90th percentile.”

The WDR now completed the SLS has been rolled back to the Vehicle Assembly Building (VAB) for final preparations before launch, now scheduled of August 19th! (Credit: SciTechDaily)

So the question was, is that good enough? After all of the years waiting for the SLS to be completed and tested, after all of the schedule delays and cost overruns, is 90% on the final exam good enough?

NASA hopes so, they have given the SLS a go ahead for a late August, early September launch of the Artemis 1 mission. A tentative launch date of August 19th has been announced. Although that flight will be unmanned it will be the first time since the Apollo program ended in 1972 that a man capable spacecraft will leave Earth orbit and travel to the Moon. And if Artemis 1 is successful then a manned Lunar orbiting mission can be expected to launch sometime in 2024.

Like the Apollo 8 mission in 1968 the Artemis 2 mission will be a Lunar Orbiter without a vehicle capable of landing. (Credit: eBay)

 Meanwhile there is a lot of news relating to robotic space exploration happening as well. One disappointing announcement was made on June 24 of 2022 concerning NASA’s Psyche mission to study that metal rich asteroid. Because of delays in the delivery of the spacecraft’s software and specially designed test fixtures the robotic probe will not be ready in time to launch during its August 1st though October 11th orbital window.

The Asteroid Psyche and Psyche Space Probe. Delays in software development and testing have forced a delay in the scheduled launch of Psyche, imperiling the entire mission. (Credit: SciTechDaily)

That leaves the entire mission sort of up in the air because the Psyche probe’s trajectory was planned to use a Mars fly-by as a gravity boost in order to reach the asteroid by 2026. There are possible launch windows for both 2023 and 2024 but they are far less optimal, the spacecraft would not reach Psyche until 2029 or 2030.

The Voyager 1 Space Probe got a gravity boost from the planet Jupiter on its way to Saturn. The Psyche space probe was designed to do the same thing using Mars as its booster but because of delays in the spacecraft’s launch the planet will no longer be in the the correct position for the boost. That will cause Psyche’s journey to the asteroid to be much longer. (Credit: Wikipedia)

So NASA is seriously considering the possibility of using the Psyche probe to study something else in our Solar System. The question is what, and would that actually help in making a successful mission. The problem of course is money; the entire Psyche mission was given an original budget of $985 million dollars, of which $717 million have already been spent. Can the Psyche team get the spacecraft completed and ready for a launch next year and still have enough money remaining for an eight-year long mission? Or, can they quickly find another target and get everything ready with the money remaining?

There are a lot of Asteroids out there that could be studied by the Psyche space probe. Perhaps Mars could give a gravity boost to one of them? (Credit: Wikipedia)

The Psyche mission is a part of NASA’s Discovery program, which was intended to develop programs that can accomplish real space science for less than a billion dollars. Therefore it is unlikely that any more funding will be forthcoming, the program managers at JPL will just have to make do with what they’ve got.

The Jet Propulsion Labouratory in California manages most planetary robotic missions for NASA. Being a bunch of bright guys they’ll figure something to do with the Psyche spacecraft. (Credit: Caltech International Offices)

Finally, the James Webb Space Telescope has been undergoing its instrument checkout and calibration before beginning it science mission, expected to start as early as this month. There was a moment of concern on the 8th of June when it was announced that a micrometeorite had struck Webb’s C3 mirror section. Such a collision had been expected several times during the space telescope’s ten-year mission and in fact four smaller impacts had already occurred but a collision of that size so early in the mission was surprising. Fortunately it wasn’t long before the science team managing Webb were confident that the small amount of damage caused by the micrometeorite would have no noticeable effect on the quality of Webb’s images.

Computer images of the damage caused by a micrometeorite (r) to JWST’s C3 mirror. The Left view is the system as it was designed. (Credit: Space.com)

Meanwhile the astronomical community is waiting with bated breath for those images, the quality of which according to NASA’s chief astronomer Thomas Zurbuchen nearly ‘brought him to tears’. It is anticipated that the first images from the Webb space telescope will be released on the 12th of July. Then perhaps we’ll all be agreeing with the opinion of the chief astronomer.

The first four images taken by the JWST have astronomers all over the world excited about what is to come. (Credit: Universe Today)

The Hubble Space telescope has revolutionized our view of the Universe and our place in it. I think that in the years to come the James Webb Space Telescope will accomplish much the same.

Scientists continue to make progress in developing technologies that can make our civilization cleaner, greener and more sustainable. So why does the environment continue to become more and more polluted?

Solar energy derived from photovoltaic cells is of course one of the technologies that environmentalists hope will replace fossil fuels as a primary source of power for human society. In order to do that solar cells need to be as efficient as possible in converting the light of the Sun into useful electricity. That’s why for decades now scientists and engineers have worked and struggled to increase the efficiency of photovoltaic materials.

With all of the ways we’ve developed to generate clean, green energy why are we still getting 90% of our energy from fossil fuels, ‘Cause it’s cheaper that why! (Credit: Greenesa)

But visible light is not the only kind of electromagnetic (EM) energy; there are others such as radio waves, X-rays and Ultraviolet radiation. One kind of EM energy that could also be gathered as a power source is infrared (IR) radiation, also just known as heat radiation. There are many sources of heat both natural; such as geothermal, and industrial, like furnaces, that could be harnessed for their energy if there were a more efficient technology available.

Infrared light is just the heat that many things in the world generate. That light is energy, energy that we could use if we develop the technology to capture it. (Credit: Herschel Space Observatory)

Now there is, for the engineers at the National Renewable Energy Labouratory (NREL) have recently tested a thermophotovoltaic cell that demonstrates a 40% efficiency at converting IR energy into electrical power. That figure is fully 8% better than the previous record of 32% and is actually better than the efficiency of conventional boilers and steam turbines that are currently the most common technology for producing electricity in fossil fuel and nuclear power plants.

IR imaging inside a power plant. That light you see is energy going to waste. Capturing that energy will by itself make power plants more efficient and help cut down on polluting emissions. (Credit: Dornier Group)

The new type of photocells are manufactured in much the same way that the better known visible photovoltaic cells are except that they possess two light absorbing layers and the entire cell is backed by a reflective layer of gold while sitting on a heat sink to prevent overheating, which decreases efficiency. The version tested is optimized to absorb heat radiation from sources at a temperature of 2,400ºC but that can be adjusted by altering the thickness of the various semi-conductor layers. Thermophotovoltaic devices also have the advantage of not having any moving parts, which both makes them longer lasting while reducing maintenance costs.

Thermophotovoltaic cell developed at MIT and NREL. With no moving parts such a cell could provide years to energy generation. (Credit: Engadget)

The team at NREL hopes that adjustments to the reflective gold layer can increase efficiency further, to perhaps as high as 50%. Nevertheless the development of thermophotovoltaic cells is one more step in our efforts to make better, more efficient use of the energy we already have, one more way of reducing the amounts of CO2 emitting fossils fuels we burn.

Construction of the thermophotovoltaic cell. The back mirror is one of the key elements to the device’s efficiency. (Credit: EnergyPost.eu)

Of course the emission of CO2 into the atmosphere is not the only massive source of pollution we humans are currently generating, there’s all of that non-degradable plastic as well. Now in many ways plastics are a miracle of modern science and have improved our lives so much, we mustn’t forget that. They are cheap, can be made in an almost infinite variety of forms, are long lasting and at least initially biologically sterile.

Plastics are wonderful, we use them is thousands of ways. And then, when we’re done with them we just throw’en away. Where’s the harm in that???? (Credit: Plasticseurope.org)

The problem with plastics is that they don’t go away; technically they don’t decay chemically, not for hundreds or thousands of years. And since we use so much of them, and we’re only recycling a small fraction of what we use, they are really starting to pile up everywhere. Also, although they don’t decay chemically they will break down mechanically into smaller and smaller pieces of plastic, pieces that are getting into the biosphere, into the very flesh of plants, fish, birds, mammals and even us!

How harmful are microplastics? Well they killed this poor little fella, and how much longer before they start killing us? (Credit: Science Learning Hub)

Because of this scientists have for the last several decades been searching for better ways to recycle or break down plastic into its chemical components so that they can be reused or absorbed back into the environment. Those chemicals that can break down plastics are a special class of enzymes known as polyester-cleaving hydrolases and in 2012 an enzyme called LCC was discovered in Japan that showed some promise as a ‘plastic eater’.

The basis of all plastics is a polymer, basically just a long chain of identical molecules. Such polymers can be very stable, lasting for years if not centuries before breaking down. (Credit: Cosmos Magazine)

Now chemists at Leipzig University have found a new enzyme that has been found in tests to breakdown a common form of plastic twice as fast as LCC. The researchers, led by Dr. Christian Sonnendecker actually discovered the new enzyme, which they have named PHL7, while investigating the chemical reactions taking place in compost heap in Leipzig itself.

Dr. Christian Sonnendecker in his lab in Leipzig. (Credit: Phys.org)

In addition to breaking down plastics faster than LCC, the chemicals that remain after PHL7 has done its work are the exact same chemicals, terephthalic acid and ethylene glycol, from which the plastic was made in the first place, which means the chemicals can then be used to make brand new plastic, a completely closed cycle, the ultimate goal in recycling.

For billions of years life on Earth recycled everything, nothing went to waste and the only input to the cycle was energy from the Sun. We need to learn how to do the same. (Credit: Recycle Montana)

And speaking of plastics we can all do our part in trying to reduce the amount of plastics we use once and then thrown away, plastic drinking straws being one of the most obvious examples. Here in the US something like 200 million plastic straws are used every day, used once and then just tossed away. Each individual straw may seem like a very small thing, a harmless thing but 200 million a day adds up and the results are easy to see anywhere trash accumulates.

Straws may seem small and unimportant but they add up! (Credit: Vonastraws)

Also the type of plastic used for most straws is of a kind that isn’t easy to recycle, and again like all plastics it doesn’t decay in the environment. One way to solve the problem all those straws is to make them out of a material that is biodegradable, a substance that bacteria and other living things can break down and use for food, straws that can be composted and become fertilizer.

If only the plastic items we use everyday could become this after we’re done with them. (Credit: Better Homes and Gardens)

Now a new company called Loliware has done just that using seaweed as their basic material. The company, based in California’s Silicon Valley, has developed a process that takes dried seaweed and mills it down. Then, after combining it with minerals and colouring, the mixture is formed into seaweed pellets that can be used in the same machines that are used to produce ordinary plastic utensils. The look and texture of the seaweed utensils are very similar to their plastic counterparts and because much of the same equipment is used in their manufacture the cost is only slightly higher.

Straws made from seaweed! Once used they can even become fertilizer for your lawn! (Credit: Ecowatch)

So with all of the new, environmentally friendly technology being developed by so many creative scientists and engineers why does it seem as if we’re continually loosing ground in the fight to clean up our planet. Vested interests and simple inertia are the main causes. The oil industry is simply making so much money off of disposable, single use plastics that they can keep prices low, making it hard for biodegradable alternatives to gain a competitive advantage.

And with the Supreme Court now limiting the ability of the EPA to regulate the emissions of power plants it’s going to even more difficult to stop polluters from poisoning our planet. (Credit: Cleveland.com)

Inertia is even more of a problem. We’ve been doing the same things for so long and we just don’t see any reason to change, particularly change to a more expensive substitute. We humans can become so used to the things going on around us that even the massive buildup of CO2 and plastic trash throughout the world we feel is just a part of life, nothing for us to worry about. But the damage we are doing to the only planet we have is real and it’s getting worse all the time. We need for all of us to recognize the danger and if not do something to help then at least get out of the way!

Seventy-five Years of ‘Flying Saucers’ and we still have no better evidence for what they are than we did in 1947.      

It was on the 24th of June in 1947 that Idaho businessman and private pilot Kenneth Arnold was flying near Mount Rainier in Washington State when he observed nine objects flying in tandem above the hills and mountains. Reporting his sighting Arnold would describe the objects as being shaped like a pie plate cut in half with a convex front and a concave rear. He also described the motion of the objects as they flew along as ‘like a saucer skipping across water’.

Kenneth Arnold, the man who did not intentionally coin the term ‘Flying Saucer’ holding a picture of the aircraft he saw. (Credit: Seattle Times)

So was born the ‘Flying Saucer’ craze that even today has not let up; tens of thousands of similar sightings have been reported in the years since 1947 and probably many more have gone unreported. Because very few reported sightings actually looked like saucers, most are simple lights in the sky that ‘behave strangely’, a technical term was soon created where the things would become known as ‘Unidentified Flying Objects’ or UFOs.

What everyone knows a flying saucer should look like. Of course this one was ‘Made in Hollywood’. (Credit: RetroZap)

In many ways Arnold’s original sighting was typical of a ‘good’ UFO report. Arnold was a well regarded, reliable citizen, a skilled pilot with 9,000 hours of flying time. The report he gave contained many details of the objects, their number and shape, where they were seen in the sky, their direction and approximate ‘angular velocity’. (That’s important in UFO sightings because if you don’t know how far away an object is you really cannot say how big it is or how fast it’s moving, you can really only estimate its angular size and angular velocity.) Sightings with that kind of detail are usually either solved or if they remain unsolved they constitute strong evidence that something very unusual happened.

Arnold’s report. Competent observers giving details accounts of their sightings are still, after 75 years the best evidence that something really is out there but exactly what, no one knows. (Credit: New York Times)

In the early days of the UFO phenomenon there was considerable debate as to exactly what UFOs were. Right from the start alien spacecraft held the lead but secret Russian aircraft and even secret American aircraft were strong contenders. In time of course the Russians and Americans fell out of favour and today anyone who sees a UFO immediately knows it’s aliens come to Earth. Which if you think about it means that they shouldn’t really be called Unidentified should they?

Yes, the US Air Force did actually experiment with flying saucers but the program was dropped because, wait for it, they don’t fly very well! (Credit: Edwards Air Force Base)

Of course Hollywood has had a great deal to do with aliens going from being the favoured to the exclusive passengers on UFOs. After all how many movies have you seen where a Flying Saucer lands and out steps a Bug Eyed Monster or BEM, as opposed to many have you seen where a Russian or American steps out? And anytime a big Hollywood movie about Flying Saucers such as Steven Spielberg’s ‘Close Encounters of the Third Kind’ or ‘ET, the Extraterrestrial’ are released the number of UFO sightings reported triples or quadruples for the next few years.

The Mother Ship from ‘Close Encounters of the Third Kind’. After ever big blockbuster UFO movie or TV show the numbers of sightings doubles or triples. So the question is, are UFOs out there or in our minds,or maybe both? (Credit: YouTube)

There have been many attempts to try to solve the mystery of UFOs. Undoubtedly the best known of which is the US Air Force’s Project Blue Book of the 1950s and 60s. In fact the term UFO was coined by one of the leaders of Project Blue Book Captain Edward J Ruppelt.  It is important to remember that Project Blue Book was never tasked with finding out what Flying saucers were. Its job, as outlined in their budget request to Congress, was to determine whether or not UFOs constituted any threat to the United States. Blue Book was closed down in 1969 but since the United States is still here, there has been no alien invasion you have to agree that UFOs weren’t that much of a threat.

The man who did coin the Term ‘Unidentified Flying Object’ or UFO was Air Force Captain Edward J Ruppelt seen here with my well word copy of this book. (Credit: UAPSG / R. A. Lawler)

There have also been several scientists who have attempted to study UFOs; perhaps the best known of these was the astronomer Josef Allen Hynek who acted as a scientific advisor to the Air Force from 1947 to 1969. It was Hynek in fact who developed the ‘Close Encounter’ system of classifying UFO reports. During his time with Project Blue Book and for many years afterward Hynek came to believe that UFOs were an important subject that needed much more attention and resources than the Air Force was willing to commit to. After leaving Blue Book Hynek would found the Center for UFO Studies (CUFOS).

Working closely with Project Blue Book was the University of Chicago astronomer Josef Allen Hynek who created the ‘Close Encounter’ classification system for UFO sightings and formed the Center for UFO Suudies. (Credit: University of Chicago)

One problem with trying to study Flying saucers is the tremendous number of bad UFO sightings, you know the type, ‘I saw somethin’ in the sky… must a been one of them Flying Saucers’. Even worse are the outright frauds and hoaxes that really make any empirical study of the subject all but impossible. Think about it, a prominent, important scientist, a Nobel Laureate let’s say, decides to investigate a famous video of a Flying Saucer. He decides that the evidence is so strong that, ‘There can be no doubt that this is a unknown phenomenon’! Only to have the video’s maker go on TV and declare it to be a fake while laughing at how he fooled a Nobel winner!

Some UFO hoaxes are easy to spot. Notice how the buildings are a bit out of focus while the saucer is really sharp???? That indicates that the saucer is actually much closer and rather small, in other the picture is a fake. Many such frauds have been created making real scientists unwilling to stake their reputation on evidence that could just be a lie! (Credit: CNET)

When scientists make measurements they do everything they can to make that data as accurate as possible, and they assume that other scientists do the same. Any scientist who is proven to have knowingly or even incompetently published inaccurate data quickly looses all of their reputation and no one will ever trust them again.

A UFO or just a hub cap thrown in the air? Strange things in the sky are so easy to fake you can’t be sure of anything when it comes to UFOs. (Credit: The Conversation)

If a scientist wants to study UFOs however they will have to trust the information provided by normal citizens, a small number of whom are only interested in publicity or sometimes even just making people smarter than them look stupid. Because of the possibility that the data coming from witnesses could be unreliable or worse, outright lies even scientists who think that there could be something interesting in UFOs won’t touch the subject and avoid making any statements regarding ‘flying saucers’.

The USA accounts for about 80% of the UFO sightings worldwide even though we have only 5% of the world’s population. So do ETs just prefer the US or are we the only country that refuses to accept the idea that something you don’t immediately recognize doesn’t have to be aliens! (Credit: The Washington Post)

Over the last seventy-five years there have been a large number of UFOs incidents that have become highly publicized. During the 1950s Flying Saucer reports even made headline news. Incidents such as the Lubbock lights in August of 1951 and the numerous radar contacts of UFOs over Washington DC during a two week period in July of 1952 forced the US Air Force to open an investigation into whether or not the phenomenon represented a threat to the security of the nation.

The Lubbock Lights were seen by hundreds of people in the city of Lubbock Texas in 1951. Turned out that they were a flight of B52 bombers practicing refueling at night. (Credit: TV Fanatic)

It was also during the 1950s that the first photo and first movie of a UFO were made. A farmer outside of McMinnville, Oregon took the first photo in May of 1950. Just three months later in August it was the manager of the Great Falls, Montana minor league baseball team however who made the first colour movie of two UFOs flying above the town. That film has been subjected to many years of analysis and even today represents some of the best evidence for there actually being something unknown flying in our skies.

Thirty seconds of film of two lights streaking across the sky of Great Falls Montana in 1950 is still some of the best evidence for UFOs. This film has been extensively studied and corroborated by other witnesses. But it’s still just two lights! (Credit: SportsLogos.Net.news

Of course the most famous UFO sighting of them all is the Roswell, New Mexico case, which grabbed headlines across the country just two weeks after Kenneth Arnold’s report. On July the 8th of 1947 the press officer at the US Army Air Core base outside Roswell, the Air Force did not yet exist as a separate branch of the military, announced that a Flying Saucer had crashed and the wreckage was in the Air Core’s possession. Just three hours later that initial report was changed to it being a weather balloon that had crashed.

The Headline that started the myth. Hours later the Army Air Corp would claim it was just a weather balloon but today even they admit there was more to it than that. What was it and will everyone ever accept the truth, who knows? (Credit: Smithsonian Magazine)

I’m not going to go into any detail about Roswell, too many lies have been told by both sides of the UFO debate for any truthful accounting of the facts to be presented now. I will just say that for the US government to have had a Flying Saucer in its possession for seventy-five years without some concrete evidence getting out is hard to believe.

Again many fakers have produced ‘evidence’ of the Roswell UFO. (Credit: KMPH)

Another aspect of UFO reports are the large number of people who have claimed to have been abducted and taken aboard the spaceships. One of the first such incidents was reported by Antonio Vilas Boas of Brazil in October of 1957. Probably the most famous UFO abduction however was that of Betty and Barney Hill who in September of 1961 were driving in New Hampshire when they were stopped by a huge floating disk and taken aboard by alien creatures where they were medically examined. It is worth noting that the Hills only remembered their encounter after suffering nightmares and seeing a psychologist who used hypnosis to ‘regain’ their memories making those memories suspect at the very least.

Betty and Barney Hill with a copy of their book “An Interrupted Journey”. It must be remembered that the Hills only remembered their UFO encounter when under hypnosis. (Credit: www.history.com)

Some UFOs sightings have been so spectacular that hundreds or even thousands of people have witnessed them at the same time. Such incidents include a Football match in Florence Italy in October of 1954 when a crowd of over 10,000 fell silent as a glowing light, traveling at high speed, came to a sudden stop directly over the stadium. Another mass UFO sighting took place in Kecksburg, Pennsylvania on the night December 9th of 1965 as a fireball passed over the town dropping debris and causing sonic booms. The likely impact area of the fireball was quickly cordoned off by the military and only years later did the government reveal that the UFO had actually been an early spy satellite returning from orbit.

The UFO that crashed in Kecksburg Pennsylvania was actually from outer space. It was an early version of a spy satellite. (Credit: Wired)

The interest and publicity generated by the early Flying Saucer reports soon inspired a few UFO researchers to begin to comb through the historical record. What those researchers discovered were accounts of strange sightings and even encounters going back centuries that were nearly identical to more modern UFO reports. Such incidents go back as far as the Old Testament in the bible where ‘Ezekiel saw a wheel’. The author Erich von Danikan even proposed in his book ‘The Chariots of the Gods’ that the deities and demons of ancient myth and legend were in fact extraterrestrial visitors who came to Earth in Flying Saucers and made contact with ancient humans.

Erich von Daniken made a lot of money from his investigations into ancient UFOs but whether or not he found any actual evidence of aliens here on Earth is debatable. (Credit: Best Buy)

The UFO phenomenon has continued until the present day. The release of TV shows or movies about aliens like ‘The X-Files’ or ‘Independence Day’ can cause an uptick in UFO sightings but they never really go away entirely, people just see strange things all the time. The publication last year of videos taken by US Navy aviators flying off of the aircraft carriers Nimitz and Theodore Roosevelt showing ‘unexplained aerial phenomenon’ has spurred new interest in flying saucers. However those same videos also highlighted the problems with the whole study of UFOs because they really provide no better evidence of just what the unknown objects are than did the Great Falls, Montana colour movie made back in 1950. That’s the plain fact, we really have no better evidence of what UFOs are than we did in the 1950s. All we really have is a large number of reliable, often trained observers who see something, and occasionally take pictures of something flying in the sky that they don’t recognize. Scientifically we’ve been stuck at the same place for seventy years.

The latest UFO flap is over a couple of short films taken by Navy Pilots of ‘something’. Really these videos are no better than the Montana film taken 72 years ago. (Credit: Wall Street Journal)

Still the recent, much publicized Navy videos have even prompted congress to take action. On the 17th of May the House Intelligence Committee began a series of hearings into UFOs in general and the UFO reports from military personnel in particular. Some of the hearings are scheduled to be held in public but others are going to be closed door for reasons of national security. Of course the true ‘UFO believers’ are going to claim that the real evidence is in the closed door hearings and the public sessions will be nothing but a cover-up. Still, you know that once congress gets involved they’ll have the whole matter sorted out in no time…yea right!

The one thing they are good at! (Credit: Radical Compliance)

Personally I’m confident that there is something out there, some unknown phenomenon. But I’m also confident that it is a natural, not extraterrestrial phenomenon. And I also think that this phenomenon should be studied scientifically, which is why I’m glad that Harvard astronomer Avi Loeb is setting up a project to gather new data about UFOs. I wish Dr. Loeb the best of luck but to be honest I don’t expect the question of UFOs to be resolved to everyone’s satisfaction during my lifetime, if indeed ever.  

Paleontology News for June 2022: New evidence about how life began as well as two stories about creatures that lived millions of years ago.

I have written about research into the origins of life on this planet several times now, see posts of 9 March 2019 and 25 September 2021. One of the leading theories of how life began is called the ‘RNA World’ hypothesis, which asserts that before DNA and proteins became the major components of living creatures it was strands of RNA that both carried genetic information and served as catalysts for the chemical reactions needed for life.  The big problem with the RNA World concept was that, although RNA can serve as catalysts they are considerable less efficient than the protein enzymes used by all modern living things.

Messenger RNA or mRNA is a hot topic right now, many biologists hope that mRNA may lead to treatments for many different diseases as well as increasing our understanding of how living creatures work in general. (Credit: The Conversation)

Now a new study, published in the journal Nature from biochemists at the Department of Chemistry at Ludwig-Maximilians University in Munich, Germany, claims to have solved that problem. The team began by looking at the way the proteins are manufactured in cells today. First a strand of DNA is copied as messenger RNA, mRNA. Then the mRNA moves to a structure within the cell known as a ribosome. As the mRNA moves through the ribosome it grabs amino acids from the surrounding tissue and, based on the information in the mRNA, builds a protein. The structure of the ribosome is therefore key in determining how the mRNA builds the protein, and curiously ribosome are themselves a combination of proteins and RNA strands.

Structure of a typical human cell. The Ribosomes are the sites where mRNA is used to manufacture proteins. (Credit: Pinterest)

The researchers therefore decided to fabricate their own ribosome out of synthetic RNA strands. This RNA only ribosome that the team produced was nevertheless able to synthesize a short pre-protein chain, called a peptide, from pieces of RNA. In this manner the team at Ludwig-Maximilians University have demonstrated a possible pathway for how an RNA based pre-living creature could have shifted from an RNA World to a more efficient RNA-Protein World. The chemists still have to work out how their RNA strands were able to eventually copy themselves into more stable DNA molecules but still the development of a proto-ribosome is a big step toward the goal of understanding how life began.

When two or more amino acids are combined they form a peptide chain. As a peptide chain grows longer it becomes a protein, the basic chemical of life. (Credit: Chemistry Learner)

To keep life going however eventually sex was developed as a method for multi-cellular organisms to replicate. Now we’re all familiar with how human beings reproduce but other types of animals have many different ways of carrying out sex. For example in many species of fish the female lays her eggs on a flat surface and then the male fertilizes those eggs when they are outside of the female’s body.

When most species of fish mate fertilization occurs outside of the body. (Credit: Two Fish Divers)

Paleontologists have lone sought to discover how early multi-cellular animals had sex and one of the earliest animals for which we have good fossil evidence are the trilobites. The exoskeletons of trilobites are very common as fossils because their top shell is reinforced with calcite making it hard enough to survive for hundreds of millions of years. Unfortunately the trilobites appendages, its legs and antenna, did not incorporate calcite so they are rarely preserved, and it would be among those appendages that we would be likely to find clues to the way trilobites mated. 

Trilobites are a fairly common fossil and can be very beautiful, like this specimen here. Unfortunately the legs and other appendages underneath the animal were not made of the same hard material as the top shell and so are rarely preserved. (Credit: Digital Atlas of Ancient Life)

One of the few fossil locations where the delicate legs of trilobites are preserved is the famous Burgess Shale of British Columbia in Canada.  Hoping to find some evidence of trilobite mating behavior Ph.D. candidate Sarah Losso and her adviser Professor Javier Ortega-Hernández of the Department of Organismic and Evolutionary Biology at Harvard examined every known specimen of the trilobite species Olenoides serratus found at the Burgess Shale that was known to have some of its appendages preserved. The specimen that showed Losso the smoking gun of mating behavior wasn’t very promising at first glance, the trilobite’s head was nearly gone as was almost half of the body. Where those missing parts should have been however there appeared nine legs in an excellent state of preservation.

The famous Burgess Shale site in British Columbia is a World Heritage site so only professional paleontologists can work there, and even they have to get a special permit to do so. (Credit: Trilobites.info)

Seven of those legs were typical trilobite legs used not only for walking but for breathing and chewing as well. That’s right trilobite gills were on their legs and since trilobites had no jaws they used the part of their legs close to the body to ‘chew’ their food.

Trilobite fossil from the Burgess Shale showing the animals legs. The longer appendages are the typical walking legs while the two shorter ones, kinda in the middle are the claspers that the animal used to grab its mate during sex. (Credit: New York Times)

The remaining two legs were different however, being shorter and lacking any gill structures. To Losso they clearly resembled the grasping appendages of modern male horseshoe crabs known as claspers that are used by the male to grab spines on the female’s shell and hang on as she lays her eggs allowing the male to immediately fertilize them. The shells of Olenoides serratus possess exactly the same kind of spines so it is highly likely that the male trilobite could have used his claspers in the same way during sex.

Reconstruction of the underside of Olenoides serratus, left. Note the two pairs of short claspers. Right is an artists impression of how O serratus would have mated. (Credit: SciTechDaily)

Now O serratus is only one of over 20,000 described species of trilobite, many of which do not have prominent spines for the males to grab during mating. Therefore it is probable that other trilobite species used other techniques during sex. Nevertheless the fact that one ancient species, O serratus who lived 520 million years ago, mated in the same fashion as a related species does today is a major discovery.

Did O serratus mate in the same way that Horseshoe Crabs do today? If they did it means that a style of mating has lasted for over half a billion years! (Credit: Seacoast Science Center)

Finally today I would like to mention the unearthing of a specimen of an ancient dog like animal that lived 2 to 28 million years ago and roamed the forests and plains of what is today North America. The fossil was found during work on a construction project at the Otay ranch area of San Diego County in California back in 2019. Encased in two large pieces of sandstone and mudstone was a nearly complete skeleton of a member of a group of species known as Archeocyons, which means ancient dog.

The ancestors of man’s best friend lived some 20 million years ago and probably filled an ecological niche not too different from what wild canines do today. (Credit: The San Diego Union-Tribune)
The fossil Archeocyon found outside San Diego is now undergoing cleaning and study at the Natural History Museum of Los Angeles County. (Credit: News Tribune)

In life the animal would have been the size of a gray fox and based upon the shape of its legs it was capable to running long distances much as a modern canine does. However the animal’s teeth were a curious mixture of flesh cutting incisors up front with grinding molars in back indicating that the animal also ate a considerable amount of plant material, unlike modern canines. It is not yet known if the specimen from San Diego represents a new species or not, the fossil bones are going to be examined by an expert in Archeocyons from the Natural History Museum of Los Angeles County. Nevertheless a nearly complete skeleton of an ancient canine will certainly tell us a great deal about how man’s best friend evolved.

Space News for June 2022: Boeing, Space X and the Russians, it was a big month for manned space flight.

Back in April NASA began its final testing of Boeing’s long awaited Space Launch System (SLS), the rocket that is going to take astronauts back to the Moon and even beyond. That final test, known as the Wet Dress Rehearsal (WDR) was to be performed as the mighty rocket stood on its launch pad. Once the WDR was successfully completed it was hoped that the first, unmanned launch of the SLS could take place at the end of this month.

The Block 1 configuration of the SLS which NASA hopes will be the vehicle that takes American astronauts back to the Moon and one day even beyond. (Credit: NASA Blogs)

Didn’t work out that way, after three attempts at the WDR the space agency called a halt, there were simply too many problems. It was therefore decided that the SLS would be rolled back to the Vehicle Assembly Building (VAB) for repairs. The rollback was carried out on April 26th and the rocket returned to the VAB where it underwent repairs to an upper stage check valve along with a leak in the tail service mast umbilical plate housing. These repairs meant yet another delay in a program that was supposed to take four years but which has now taken eleven.

The Space Launch System (SLS) on its way back to Pad39B at Kennedy Space Center. (Credit: Engadget)

The repairs did go smoothly however and the WDR is now expected to take place on June 19th, and if there are further problems it could be much later. That means that the first actual launch of the SLS will not occur until July at the earliest, the earliest launch window would be July 26 to August 9. Any more delays could threaten the entire the schedule Artemis Program and America’s hopes of getting back to the Moon before 2030.

Mission plan for the Artemis 1 unmanned flight. (Credit: Space Center Houston)

Fortunately for Boeing there has been some better news as well. The aerospace corporation’s Starliner manned capsule, the planned competitor for Space X’s dragon capsule for the task of taking astronauts to Low Earth Orbit (LOE), is preparing for its second attempt at an unmanned test flight to the International Space Station (ISS). Starliner’s first attempt, known as Orbital Test Flight One or OTF-1, was back in 2019 when the capsule was successfully launched and recovered but a software ‘glitch’ prevented the capsule from being able to reach the ISS. Boeing thought that they had fixed all of Starliner’s problems last August and the capsule, sitting atop its Atlas V rocket was preparing to launch when a series of valve problems caused the flight to be canceled, further delays in a another Boeing program that has been plagued with delays.

Launch of the unmanned Starliner Capsule aboard its Atlas 5 rocket. This second OFT of Starliner has been declared a success even though there were a few problems with the spacecraft. Photo Credit: (NASA/Joel Kowsky)

The second unmanned launch, OTF-2, took place on May 19th as Starliner was successfully lifted into orbit by its Atlas 5 / Centaur launch system. Just twenty-four hours later Starliner docked at the ISS but not without a few problems along the way. Two of the space capsule’s twelve maneuvering thrusters failed due to a drop in chamber pressure during the trip but thanks to built in redundancy the craft still succeeded in reaching the ISS. Starliner then remained docked at the ISS for about one week before the astronauts manning the station prepared it for its return to Earth.

Starliner docking at the International Space Station (ISS). (Credit: CBS News)

Starliner performed its reentry burn on the 25th of May and successfully touched down in New Mexico some 45 minutes later. At a press conference shortly after touchdown the OFT was officially called a success, despite the problems with thrusters. Now the capsule will undergo a through check out but it seems likely that the final, manned test fight of Starliner will take place sometime later this year. If that flight is also successful then starting next year NASA could have two separate vehicles, and two separate corporations providing those vehicles, transporting astronauts to the ISS. That was the original plan for the Commercial Crew Program that was initiated back in 2014.

After a successful mission Starliner landed in the desert of New Mexico. (Credit: Yahoo)

The flip side of the Boeing’s problems in the Commercial Crew Program is the success of Space X and its Falcon 9 reusable rocket along with the Dragon capsule. In a sequence that is now becoming a routine operation the Crew-4 mission carrying four astronauts to the ISS was launched to the ISS on April 26 and was followed by the return of the Crew-3 mission on May 5. Crew-3 had been launched back on 11 November of 2021 so Space X is now sending four astronauts to the ISS on a regular, every six month basis.

The Sixth successful manned mission for Space X was the launch of the CREW 4 astronauts for their 6 month stay aboard the ISS. (Credit: NASA Blogs)

And even while maintaining the official personnel of the ISS Space X also launched the first private, tourist mission to the space station. That flight, organized by Axiom Space Company took three scientists / engineers and a retired astronaut to the ISS for what was supposed to be a one week stay. Because of bad weather in Florida and scheduling conflicts however the Ax-1 mission was forced to remain at the ISS for two weeks. I’m sure the passengers were very upset at having to stay in LOE the extra week.

The launch of the Crew-4 mission means that Space X has now launched 26 astronauts into LOE, more than the nation of China. Thanks in large part to Space X LOE is starting to get a little bit crowded and with more space stations being placed into orbit over the next decade the Falcon 9 / Dragon system is going to be plenty busy.

On April 26th China also launched its fourth manned mission to its ,under NASA Space Flight)construction space station. (Credit:

But speaking of the ISS, political turmoil here on Earth, the war in Ukraine that is, may soon lead to a breakup of the international cooperation that has allowed the station to operate for over twenty years. The space agency Roscosmos has again declared that western sanctions against Russia because of its invasion of Ukraine may force it to pull out completely from the ISS. “The decision has already been made,” Dmitry Rogozin, the head of Roscosmos told the Rossiya-24 TV network.


The Head of Russia’s Space Agency Roscosmos Dmitry Rogozin has been threatening his country will pull out of the ISS consortium ever since western nations put sanctions on Russia for their invasion of Ukraine.Photo Credit: (NASA/Bill Ingalls)

Now Russia has not formally informed the other partners in the ISS consortium so Rogozin’s statement may just be more Russian posturing. The head of Roscosmos also promises that Russia will give NASA and the other space agencies a year’s notice, “…in accordance with our obligations.” Still, a year will be scarcely enough time to make the arrangements for the Russians to separate their core modules from the ISS.

Part American, Part Russian with bits and pieces from other nations the ISS is a very delicate piece of equipment that would take a long time just to figure out how to disassemble. (Credit: NASA)

Again, the Russians may just be making empty threats. With their current financial problems it’s hard to see how they could continue to operate their part of the ISS without help from the US and other countries. If Russia does actually go through with dissolving the ISS partnership it may very well result in the end of Russia as a space power.

The war in Ukraine is not going well for Russia and could mean the end of Russia as a great power, maybe even in space! (Credit: POLITICO)

For both Boeing and the Russians the future holds as much threat as promise. Only Space X seems to have what it takes to go forward into the new world of commercial as well as governmental manned space flight.

Movie Review: Doctor Strange in the Multiverse of Madness

The concept of a ‘Multiverse’ has been proposed over many centuries by both scientists and philosophers as a means of understanding the almost random nature of reality and dealing with all of the ‘what ifs’ of history. You know what I mean, like, what if Hitler had died in World War I, would there have been a World War II?

Adolf Hitler, in circle, served in the German army throughout WWI, wounded twice he was awarded both Iron Cross 1st and 2nd class and rose to the rank of Corporal. What if he had died during the war, how much would history have changed and are there Universes where that actually did happen. That’s the literary attraction of the Multiverse concept! (Credit: BBC)

In 1952 physicist Erwin Schrödinger suggested the existence of an infinite number of universes as a means of eliminating the conceptual problems that arose in physics from Heisenberg’s Uncertainty Principle and the Wave / Particle duality. Those problems famously include Schrödinger’s own thought experiment where a cat is placed in a box with a vial of poison gas. The vial is set to be triggered by the decay of a radioactive atom, an event that according to quantum mechanics occurs on a purely random basis. The question then becomes, is the cat is alive or dead while inside the box?

In Schrodinger’s famous thought experiment a triggering device, upper left, is set off by the decay of a radioactive element, in quantum mechanics a random event with a measurable half life. If triggered the device breaks a vial containing a poison gas killing the Cat. So, after a time equal to the half life, is the cat alive or dead, or both???? (Credit: Facebook)

According to a framework developed by Niels Bohr, and known as the Copenhagen Interpretation the cat is neither dead nor alive until you open the box and observe it. The idea was that, in Bohr’s view, all of the fuzzy quantum states of a particle, even a cat, collapsed into a single state whenever that particle was observed.

According to the Copenhagen Interpretation the wave function of a particle is fuzzy because of wave mechanics. The location of a particle becomes more precise only when we make a measurement of it, collapsing the wavefunction. (Credit: GlamBlog)

In the Multiverse view however the cat is dead in some universes and still alive in other universes. In fact every time a particle, any particle can occupy two or more quantum states then the same number of universes pop into existence. If you think about it, with all of the particles in the universe and all of the quantum states they can occupy every tiny fraction of a second there must be a whole lot of universes in that multiverse!

Are there an infinite number of universes, each just slightly different from all the others, floating like bubbles in a glass of Champaign? That’s the idea behind the multiverse concept. In some universes Schrodinger’s cat is dead, in others it lives, in most it probable never exists. (Credit: Live Science)

That’s why most physicists still think that the idea of a multiverse is an even worse notion than Bohr’s where everything is fuzzy until you observe it. Science Fiction authors however quickly became fascinated by the concept of the multiverse and whether it be parallel universes in the original ‘Star Trek’ or the ‘Conjunction of a Million Spheres’ in Michael Moorcock’s fantasy novels, along with many other stories, the multiverse is now a fixture in SF.

In the fantasy novels of Michael Moorcock each universe in the multiverse has its own champion, all of whom share a certain kind of fate. They are the Eternal Champion. (Credit: World of Books)

The latest version of the multiverse comes from the Marvel Cinematic Universe (MCU) with the movie ‘Doctor Strange in the Multiverse of Madness’. Now Doctor Strange, played by actor Benedict Cumberbatch, experienced a bit of the complexities of the Multiverse in the last big Marvel movie ‘Spiderman: No Way Home’ where three Spidermen from different universes, played by the three actors who have played spidey in movies, join together to fight their villains from different universes.

Poster for Doctor Strange in the Multiverse of Madness from Marvel / Disney. (Credit: IMDb)

‘Doctor Strange in the Multiverse of Madness’, henceforth just ‘Doctor Strange’, begins with the mystic master rescuing a young woman from an extra-dimensional monster. Once the immediate threat is defeated the woman, whose name is America Chavez, played by actress Xochitl Gomez, tells Strange that she is being pursued because of her ability to travel through the Multiverse from one Universe to another. Strange is startled by the woman because he has seen her in his dreams but she replies that those dreams were realities from another universe where another Doctor Strange tried to protect her. As proof of her claims the woman shows Strange the corpse of the Doctor Strange who tried to protect her.

Recognizing that witchcraft is involved in the daemons who are chasing Chavez Strange decide to seek the aid of his fellow Avenger the Scarlet Witch only to realize that it is the Witch herself who is sending the daemons after Chavez. The Scarlet Witch, also known as Wanda Maximoff and played by actress Elizabeth Olsen, wants to use Chavez’s power to travel to a universe where her two sons, lost in the TV show Wandavision, are still alive.

Some of the events in the TV show Wandavision are carried over into Doctor Strange in the Multiverse of Madness but you really didn’t have to see Wandavision to figure out what’s going on in Doctor Strange, I didn’t! (Credit: Engadget)

Yes, I know it sounds confusing and it helps if you’ve seen the movie ‘Spiderman: No Way Home’ and TV show ‘Wandavision’ but they really aren’t necessary. You quickly pick up the idea that Wanda has gone bad and it isn’t long before Strange and Chavez are bouncing from one universe to another. In those alternate universes they encounter alternate versions of other Marvel superheroes, all while being chased by the Scarlet Witch who uses an ancient book of evil magic to occupy the versions of herself in those alternate universes.

In the Multiverse of Madness Benedict Cumberbatch plays Doctor Strange, the Good Guy, mostly. Elizabeth Olsen plays the Scarlet Witch who is the Bad Guy, mostly. That’s one reason why Marvel movies are better than the DC ones because the characters, good or bad, aren’t just one or the other but like real people are something of a mixture of both. (Credit: Hindustani Times)

In other words it’s a fun roller-coaster ride where all of the possibilities of the multiverse are rather cleverly displayed. The acting in  ‘Doctor Strange’ is typical for a superhero movie, good enough to not detract from the action. And once again the writers at Marvel just seem to be able to give enough humanity to their characters so that, unlike the DC heroes, they do seem like real people, even with their powers.

To me it’s not just Superman’s powers that are hard to accept it’s his too good to be true personality. (Credit: DC Database)

I do have a few small problems with ‘Doctor Strange’, for one thing there are so many cameos by altered Marvel superheroes, along with four different Doctor Stranges and I think it was three different Wandas that it gets a mite confusing after a while, but that’s part of the fun of the multiverse. A bigger problem is that the outcome, for all three of the main characters, is pretty predictable. Finally there’s the whole question of how America is able to go from one universe to another. She doesn’t even know how she does it so we’re given absolutely nothing in terms of an explanation.

In real life a predictable outcome is a good thing. In a story, not so much. The fates of the three main characters in Doctor Strange in the Multiverse of Madness are pretty predictable even with the entire Multiverse to work with. (Credit: Bryson Brainstorming)

Still ‘Doctor Strange in the Multiverse of Madness’ is certainly a fun film, another solid entry in the Marvel Cinematic Universe that now encompasses the entire Multiverse. So, should we now start calling it the Marvel Cinematic Multiverse?

The Active Galactic Nuclei (AGN) at the heart of Galaxy 1ES 1927+654 increased in brightness by over a hundred times for several months back in 2017. What can that tell us about the Supermassive Black Hole that powers the AGN?

The supermassive black hole at the center of our Milky Way galaxy is quiet right now, that is, it is not actively feeding on nearby gas and dust, to say nothing of planets and stars. All of the supermassive black holes in the galaxies close to ours are like that, quiet.

Astronomers are convinced that every large galaxy, this is Andromeda, has a supermassive black hole at their center. So in the early Universe did supermassive black holes form galaxies around them or do galaxies form supermassive black holes inside them? That’s one of the questions the new James Webb Space Telescope was designed to help answer. (Credit: Space.com)

As we look at galaxies further away, the picture changes. The supermassive black holes in distant galaxies are usually surrounded by an ‘accretion disk’ of matter that is slowly falling into the black hole. The energy released by all of that matter falling into the black hole causes the accretion disk to shine as brightly as thousands or even millions of stars. These radiating objects are technically known as ‘Active Galactic Nuclei’ or AGN and are among the brightest objects in the Universe.

Here’s a galaxy with a very active galactic nuclei. The energy released by matter falling into the supermassive black hole at this galaxy’s center is outshining the billions of ordinary stars in the galaxy itself. (Credit: Think Big)

 Now remember in astronomy the further away you look from Earth the further back in time the object you’re seeing is. The brightest star Sirius is about ten light years away so the light you see it by took ten years to reach your eye so what you are seeing is Sirius as it looked ten years ago. The same is true of the pole star Polaris, which is about 500 light years away. When you look at Polaris in the night sky you are seeing it as it was 500 years ago.

Every Boy Scout knows that to find Polaris, the pole star you use the front two stars of the Big Dipper. Now Polaris is about 500 light years away so the light we see at night left the star 500 years ago. Therefore today we see Polaris as it was 500 years ago. (Credit: BBC Science Focus Magazine)

So when astronomers see that the supermassive black holes in nearby galaxies are quiet, that is not feeding, while the supermassive black holes in more distant galaxies are more active it’s telling them that over time those black holes consumed all of the matter close to them and only stopped feeding because there’s nothing left nearby for them to eat. In this way astronomers have been able to model the life cycle of supermassive black holes going from actively feeding to quiet as they deplete the matter around them.

The various parts of an AGN. The Supermassive Black Hole pulling matter into itself powers the whole AGN. (Credit: NASA)

This transition from active to quiet takes a very long time, upwards of a billion years or more making supermassive black holes rather stable objects. It came as something of a shock therefore when in late 2017 the AGN at the center of galaxy 1ES 1927+654 suddenly increased in brightness by a factor of nearly 100 in the visible part of the spectrum. As stated by Nicolas Scepi, a postdoctoral researcher at the University of Colorado and the National Institute of Standards and Technology (NIST) and a member of the team studying 1ES 1927+654, “Normally we would expect black holes to evolve over millions of years.” So unusual was the change in that a large team of astronomers working across the electromagnetic spectrum from radio waves to X-rays was quickly assembled to investigate 1ES 1927+654 at every wavelength.

Image of the Galaxy 1ES 1927+654 (Credit: Poandpo.com

What the researchers found was that, even as the brightness of 1ES 1927+654 increased by a factor of 100 in both the visible and ultra-violet (UV) portions of the spectrum it decreased by a factor of 1000 in the X-ray spectrum. The observation that the intensity of UV and X-rays went in opposite directions was in itself a surprise, as the strength of X-rays and UV generally go hand in hand.

Some of the data taken of galaxy 1ES 1927+654 during the time when its AGN appears to have flipped its magnetic field. (Credit:

But that unexpected decrease in X-ray output was the clue that Doctor Scepi and his colleagues at the University of Colorado needed to solve the puzzle of 1ES 1927+654. In a paper published in the Monthly Notices of the Royal Astronomical Society the astro-physicists argue that the magnetic field generated by the charged particles making up the accretion disk around the supermassive black hole flipped its north and south poles causing the change in the AGNs brightness.

Now scientists already know of two astronomical bodies whose magnetic field flips their poles on occasion. The Sun’s magnetic field flips as a part of its eleven year sunspot cycle. The Earth’s magnetic field also cycles back and forth although the cycle is much longer, the best estimates being about every 200,000 years and we are now overdue for such a flip. See my post of February 8th, 2017 concerning evidence that Earth’s field is currently starting just such a flip. Whether or not other stars and planets, Jupiter perhaps, also flip their magnetic fields is the subject of active research among astronomers and astro-physicists.

Earth’s magnetic field is very messy right now with a big piece of the north pole in the south while bits of the south are poking out of the north. Are these signs that the field is getting ready to flip? (Credit: Extreme Tech)

For the accretion disk of an AGN to flip its magnetic field was unexpected however. The theory put forth by Scepi and his colleagues suggests that new matter being pulled into the accretion disk possesses the opposite orientation of the existing magnetic field, weakening and then flipping it. The team’s calculations showed that the result of the flip would be an increase in the visible and UV spectra at the expense of X-rays, exactly what was observed in 1ES 1927+654.

The light our eyes can see is only a small portion of the Electromagnetic Spectrum. When galaxy 1ES 1929+654 grew in brightness in the visible and ultraviolet parts it also lost intensity in the X-ray portion so the total energy output remained pretty constant! (Credit: NOAA)

If one AGN can flip its magnetic field can’t others. The behaviour exhibited by 1ES 1927+654 may actually be fairly common, astronomers simply haven’t been looking for it. But they certainly will be now that they know what to look for. I think before long astronomers will have found few more oddly behaving AGN and they will provide more data to help the theorists refine their models of their magnetic fields.

Imaged by the Event Horizon Telescope project, the same team that obtained the first picture of a black hole, here is the Supermassive Black Hole at the center of our own Milky Way galaxy known as Sagittarius A. (Credit: CNN)

Even as I was writing this post the Event Horizon Telescope, the same group who gave us the first picture of a black hole back in 2019, see my post of 17th of April 2019, have accomplished the same feat with the supermassive black hole at the center of our Milky Way galaxy. The black hole, known officially as Sagittarius A, is quiet now, its accretion disk is very small. Nevertheless the information gathered from the new image will tell us a great deal as we continue to try to understand the mysteries of Supermassive Black Holes.