Recent Mass Shootings in Texas and Indiana provide strong evidence against the argument that ‘The only thing that can stop a Bad man with a Gun is a Good Man with a Gun.’

With all of the mass shootings taking place across the United States nowadays it seems that we’ve all just come to accept the massive amounts of bloodshed as ‘normal human behavior’ against which nothing can be done. In keeping with this philosophy the National Rifle Association (NRA) along with their Republican lawmakers continue to assert the premise that ‘The only thing that can stop a Bad man with a Gun is a Good Man with a Gun.’

The idea of ‘Justice’ being provided by a ‘Good man with a Gun’ is old and maybe someday we’ll recognize that it’s also obsolete. (Credit: Buffalo Bill Center of the West)

But a premise is not an observed fact, and to be considered true a it must stand the test of comparison against actual observations. That means that the premise about good men stopping bad has to be judged by those shooting incidents where the bad man with a gun was stopped by one or more good men with guns. I would like to do just that using the recent mass shootings at Robb elementary school in Uvalde Texas and the Greenwood Park Mall in Greenwood, Indiana. I will argue that these two events represent the two extremes in the reactions of the ‘good man’ to the problem of the ‘bad man’. As such they are what a physicist would call boundary conditions which can be used to give insight into all of the possible outcomes of the ‘good man / bad man’ premise. 

It’s become an unending dirge of mass shooting after mass shooting in this country. This is just a typical weekend in America today. (Credit: ABC News)

In both of these incidents the shooter acted without any immediate provocation or intent to achieve some rational goal. Instead the perpetrators simply carried an arsenal of weapons to a place where a large number of innocent people would be and begin firing with the aim of killing as many people as possible. In neither incident did the assassin have a prior record of violence sufficient enough to prevent them from purchasing their weapons legally, nor for each killer has a motive has been discovered for their heinous acts. For these reasons the shooter in both the Uvalde, Texas and the Greenwood, Indiana mass shootings certainly can be classified as a ‘Bad Man with a Gun’.

The victims of the shooting at Robb Elementary School in Uvalde Texas. While they died over a hundred ‘Good Men with Guns’ stood around doing nothing. (Credit: WSVN)

Also, in both Uvalde and Greenwood the bad man with a gun was demonstrably stopped, killed actually by a good man with a gun. In Uvalde the shooter, whom I will not name, was killed when local police stormed the schoolroom where he had barricaded himself. In the Greenwood shooting it was an ordinary citizen, just someone who was himself licensed to carry a firearm, who engaged and killed the mass shooter.  The main difference between the two confrontations is in the competence of, and most importantly the speed with which the good man reacted to the life and death situation at hand.

If the Good Men with Guns just stand around and do nothing they certainly aren’t going to stop any Bad Men. (Credit: Complex)

At Uvalde a laundry list of ‘systemic failures’ along with an unwillingness to act by senior law enforcement officers led to a 77 minute delay, after the shooter had begun his rampage, before the assassin was finally confronted and subdued. During all that time 19 children and two of their teachers lay dead or dying while others who still lived were at the mercy of the shooter. Certainly part of the reason for the delay was the large number of different law enforcement agencies that responded to the active shooter alert. Of the 376 good guys who showed up at Robb Elementary 149 were members of the U.S. Border Patrol while 91 were state police, the vaulted Texas Rangers. It seems as though these state and federal officers thought that local police should take charge because of their superior knowledge of Robb Elementary and the people there.

Managing Chaos requires a particular skill set that obviously nobody at Robb Elementary School possessed. (Credit: Dreamstime.com)

And there were more than enough local police at the scene. 12 Arredondo’s Sheriff’s Deputies along with 25 members of Uvalde’s police force of whom 5 were school police. All in all there were simply too many cops from too many agencies with no one willing to step up and take charge. Confusion as to room keys and whether any of the kids in the room could still be alive added to the chaos but in any case Robb Elementary School in Texas is an excellent example of just how badly a ‘good man with a gun’ can handle a ‘bad man with a gun’. In other words, it is undeniable that in some cases good men cannot be relied upon, some better solution must exist and must be found.

The ‘Keystone Cops’ were a metaphor for bureaucratic incompetence that still works today. (Credit: Gfycat)

The shooting at Greenwood Mall in Greenwood, Indiana is just the opposite. When a shooter opened fire at the Mall’s Food Court with his assault rifle local citizen Elisjsha Dicken was having lunch with his girlfriend. As he heard the gunshots Elisjsha, who is legally permitted to carry a firearm in the state of Indiana, immediately took out his own pistol and calmly fired ten rounds, mortally wounding the shooter. Unfortunately, despite Dicken’s heroic actions the killer still managed to kill three innocent people and wound a fourth before being taken him down.

Greenwood Park Mall in Indiana is no different from a thousand malls across America and unfortunately as the site of a mass shooting it’s become typical of part of our culture as well. (Credit: WNDU)

At Greenwood the good man reacted immediately, stopping the assassin before he could harm anyone else, therefore it can be argued that Elisjsha Dicken represents the best case scenario of the ‘Good Man with a Gun stopping a Bad Man with a Gun’. Three innocent people still got killed however, the best case scenario was still a mass shooting with multiple dead and wounded.

Elisjsha Dicken was the “Good Man’ who reacted quickly and stopped the ‘Bad Man’. Still three innocent people died despite Elisjsha’s best effort. (Credit: CNN)

I have argued above that Uvalde and Greenwood can be considered as approximating the worst and best case of the possible outcomes for the ‘The only thing that can stop a Bad man with a Gun is a Good Man with a Gun’ premise. If that is so it is clear that even the best case scenario is still horrific and every other possibility progressively worse making the premise demonstrably false.

Relying on Good Men with Guns to stop the Bad Men may seem romantic but it still means we have to live in a violent, horrible world. Are we really going to admit that we aren’t intelligent enough to find a better solution. (Credit: Facebook)

Therefore, if we do in fact want to try to reduce the level of gun violence in this country, and yes it is true we cannot even hope to completely stop it, then we must find a new premise to test. Of course everyone already knows what that premise is, ‘The best way to stop a Bad man with a Gun is to NOT LET THEM GET A GUN in the first place’.

So long as guns are a big part of American Culture is it only a matter of time before someone points a gun at you!!!!! (Credit: Southern Arizona Attractions Alliance)

In other words gun control, eliminating military style weapons completely along with high capacity magazines. At the same time we must adopt stricter background checks to keep people with mental problems from acquiring firearms. None of these suggestions have to adversely effect legitimate hunters or those who want to purchase a gun to protect their homes. They will however reduce the current high frequency of murders in this country, not just the mass shootings. Gun violence in the US has grown tremendously over the last thirty years, it’s time to finally do what we all know is the only thing that will actually work.

Astronomy News for August 2022: How Astronomers conduct their studies of objects in the wider Universe outside our Solar System.

Over the last century astronomers have discovered a veritable zoo of strange objects inhabiting the Universe. Starting with other galaxies beyond our Milky Way they have also studied and named things like Pulsars and Quasars, Active Galactic Nuclei (AGN) and Black holes (see my posts of 17 April 2019 and 26 March 2022) and two distinct types of Supernova (see my posts of 26 May 2021 and 18 January 2020). Like any wildlife expert when astronomers find a new beast out there they first have to compare the object to a checklist of the things they already know before they even consider a new announcing a new species of astronomical animal. A case in point is the recent detection of a new radio source coming from a galaxy known as NGC 2082, a G type spiral about 60 million light years from the Milky Way with a diameter of an estimated 30,000 light years that lies in the constellation of Dorado in the southern hemisphere.

A pretty but rather ordinary spiral galaxy in our southern sky, NGC 2082 is the home of some perplexing radio emissions. (Credit: Wikipedia)

The emissions coming from NGC 2082 are currently being studied at radio frequencies by the Australian Square Kilometer Array Pathfinder (ASKAP), the Australian Telescope Compact Array (ATCA), the Parkes Radio Telescope along with visible light observations by the Hubble Space Telescope. What the Australians have found is a strong point source some 20 arcseconds from the center of NCG 2082 that has been given the designation J054149.24-61813.7. So far the observations of J054149.24-61813.7 tell us more about what the object isn’t that what it is. Looking at the chart below, which shows the spectral index of J054149.24-61813.7 it can be seen that the object’s power emissions as a function of frequency is pretty constant, unlike those a pulsar or supernova remnant.

The source of the radio emissions in NGC 2082 is offset from the center of the galaxy so it probably isn’t an Active Galactic Nuclei (AGN). So what is it? (Credit: Balzan, Filipovic et al)
Spectra of the emissions source indicate that it is something different from those sources we already know about. So what is it? (Credit: Balzan, Filipovic et al)

In fact the flatness of J054149.24-61813.7 indicates that the radio emissions are thermal in nature, something like an AGN. However looking at the optical image above, taken by Hubble it can be seen that J054149.24-61813.7 is not at the center of NGC 2082 and in the close up lower left there does not appear to be any visual counterpart to the radio emissions. So, for the moment at least astronomers have a mystery on their hands and if further observations fail to find some clear link to a known type of radio source, perhaps a new species of object has been found for our astronomical zoo.

It is a real zoo out there. Galaxies come in all sizes and shapes so astronomers have to figure out some classification scheme just to start to understand them. (Credit: Galaxy Zoo)

Not that we aren’t still discovering new details about the strange astronomical objects we already know about. Take neutron stars for example, those ultra dense objects who are the remnants leftover after supernova explosions, stars with the mass of our Sun crushed down to the size of a city. Neutron stars have gotten some press over the last few years because the first detection of gravity waves came from the merger of two neutron stars, see my posts of 17 April 2017 and 7 October 2017. Now a multi-disciplinary team of scientists have combined their observations and theories to produce a much more detailed model about the structure of neutron stars.

When I was in college it was thought that neutron stars were so densely packed that they couldn’t have any internal structure. The Universe however thought differently. (Credit: Innovation News Network)

The study was led by theorists from the Technical University of Darmstadt in Germany and Utrecht University the Netherlands but it includes astronomical observations of neutron stars by radio and visible telescopes along with X-ray satellites. Also included were the results of heavy ion collision experiments conducted at Brookhaven National Labouratory in the US.

Once the most powerful particle accelerator in the world Brookhaven National Labouratory’s scientists still manage to do cutting edge science. (Credit: Stony Brook University)

Those experiments were especially central to the modeling of neutron stars because, unlike the particle collision experiments performed in the Large Hadron Collider at CERN the collisions at Brookhaven are of entire gold nuclei being smashed together at velocities near that of the speed of light. That makes the conditions at Brookhaven much closer to the conditions inside a neutron star.

When two gold nuclei collide in Brookhaven’s accelerator conditions very similar to those deep inside neutron stars are generated. (Credit: Flickr)

By combining the data from nuclear experiments here on Earth with observations of objects thousands if not millions of light years away the researchers hope to develop techniques for modeling many of the strange objects in the astronomical zoo. A multi-disciplinary approach combining astronomical data with the results of Earth bound experiments along with the latest theories, all in order to better understand our Universe.

Finally, in order to prove that the theoretical models they’ve developed are correct, astronomers have to compare the results of those models to observations of actual astronomical objects. That’s what astronomers at the University of Arizona are doing with the star VY Canis Majoris, a red supergiant that is considered to be the largest known star in the Milky Way.

The constellation of Canis Major (the Big Dog) contains Sirius, the brightest true star in our sky. The big dog also contains a lot of other interesting objects

Red giants like VY Canis Majoris have used up all the hydrogen fuel they initially possessed and are now using the helium produced by hydrogen fusion as their fuel. This change requires the core of the star to greatly heat up which causes the star’s outer atmosphere to expand, turning them into giants like Betelgeuse or Antares or VY Canis Majoris. In fact VY Canis Majoris has probably used up most of its helium fuel and may be getting very near the absolute end of its life.

Huge but cool, Red Giant stars have used up their hydrogen fuel and are approaching their end of their lifespan. (Credit: Forbes)

Exactly how red supergiants end their lives is something of a controversial subject right now. It was thought that red giant stars exploded as supernova, leaving only a neutron star or back hole as a remnant but lately there has been evidence of the cores of some red supergiants simply collapsing into black holes without exploding. The astrophysicists at the University of Arizona hope to resolve some of this debate by comparing their models to VY Canis Majoris.

Current thinking is that a red giant will become a neutron star or black hole by going supernova. A few astrophysicists however think that some could simply collapse without exploding. (Credit: New Scientist)

VY Canis Majoris is an excellent candidate for this study not only because it is simply the biggest star we know about but because, at a distance of 3,000 light years away it is also relatively nearby. That closeness will allow better, more detailed observations of the conditions on VY Canis Majoris to be made, enabling a more precise comparison to be made to the model. These are just a few of the techniques astronomers and astrophysicists use to study the many species of astronomical object that make up the cosmic zoo that is our Universe. 

The Fields Medals, Mathematics version of the Nobel Prize have been awarded to a group of young Mathematicians.

Every field of scientific research has its own ‘highest honour’ the award that is given to those researchers who have made the greatest contribution in that field. For Physics, Chemistry and Physiology that award is of course the Nobel Prize but for Mathematics the highest honour is the Fields Medal, which are awarded just once every four years by the International Mathematics Union. The Fields Medals also differ from the Nobel in another way because they are given, not to older mathematicians for a lifetime of achievement but to mathematicians under the age of forty who are currently doing important and impressive work.

Although not so well known as the Nobel Prize the Fields Medal for Mathematics is every bit as highly regarded among scholars. (Credit: The Indian Express)

This year the Union announced on July 5th that they had chosen four young mathematicians for the award. The winners are Maryna Viazovska of the Swiss Federal Institute of Technology in Lausanne, aged 37, Hugo Duminil-Copin, 36 of the Institut des Hautes Études Scientifiques near Paris France, James Maynard, aged 35 of the University of Oxford in England and June Huh of Princeton University in New Jersey, USA, aged 39.

Only the second woman to be awarded the Fields Medal Maryna Viazovska is a numbers theorist who hails from the Ukraine but is currently working at the Swiss Federal Institute of Technology in Lausanne. (Credit: Nature)

Maryna Viazovska is only the second woman ever to receive the Fields Medal and she did so for her pioneering work in the stacking of equal sized spheres in dimensions higher than three. This problem of how to most efficiently stack spheres, sometimes also known as stacking cannonballs, was first considered by the great mathematician and physicist Johannes Kepler.  After considerable study Kepler decided, but couldn’t rigorously prove that the way soldiers stacked their cannonballs was the most efficient but the problem remained unsolved until mathematician Thomas Hales at the University of Michigan succeeded in 1998 with a 250 page proof.

The most efficient way to stack cannon balls may seem trivial, but a rigorous proof was not completed until 1998. Now mathematicians are trying to solve the problem in dimensions higher than 3! (Credit: International Mathematical Union)

In the years since Kepler mathematicians have become interested in spaces with more dimension than the normal, like the four dimensions of Einstein’s space-time. As you might guess problems like stacking spheres become more difficult with each added dimension. Back in 2016 Doctor Viazovska succeeded in finding the best solution in eight dimensions, calling her arrangement E8. Then, only a week later and with the help of four other mathematicians she used E8 to find the solution in 24 dimensions.

One page of Doctor Viazovska’a proof for 8 dimensions. It takes years of study and experience to be able to understand such complex mathematics. (Credit: YouTube)

Was it just luck that the solution in 8 dimensions allowed her to quickly find the solution in 24 dimensions? Doctor Viazovska doesn’t think so, she’s certain that there’s a connection and if she can find out what that connection is it may lead to more solutions in other dimensions.

How mathematics works in dimensions higher than the 3 we are aware of is a very hot topic right now. (Credit: Quora)

Meanwhile at Oxford University James Maynard is one of many mathematicians over the years who have fallen in love with prime numbers, those numbers like 7, 11 or 29 that can only be evenly divided by themselves or 1. Doctor Maynard’s work concerns the famous twin prime conjecture. That’s where, once you find a prime number, let’ say 11, the number just two later 13 is also very often another prime. This pairing has been known for centuries and as far as we know, goes on forever. (Remember since all even numbers can be divided by two, that makes two itself the only even prime, all other primes are odd.)

Oxford University’s James Maynard right where every mathematician wants to be, in front of a blackboard solving a problem. (Credit: YouTube)

As the numbers get bigger the density of primes gets smaller, for example there are 24 prime numbers between 0 and 99 but only 14 between 900 and 999. Despite the growing space between them in 2013 a mathematician named Yitang Zhang at the University of New Hampshire was able to prove that there was an infinite number of prime pairs and that the separation between them was always less than 70 million.

Prime numbers (Red) and Composite number (Blue) between 0 and 100. (Credit: Study.com)

Extending Doctor Zhang’s work what Doctor Maynard has succeeded in doing is to reduce that separation to less than 600. Additionally Doctor Maynard was able to show that there are an infinite number of primes that do not end in a 7. One more little piece in the puzzle of the most interesting group of numbers there is.

Currently the record holder for the largest Prime Number. Just thinking about a number that large makes my head spin. (Credit: Steemit)

On the other hand Doctor Hugo Duminil-Copin is a little more practical, in fact during college he had difficulty in deciding whether to be a mathematician or a physicist. Doctor Duminil-Copin’s research deals with the mathematics of what are known as phase transitions, a very complex subject indeed. Phase transitions are sudden, large-scale changes in the characteristics of a material, such as when liquid water freezes into ice.

Hugo Duminil-Copin having fun. (Credit: Institute des Hautes Etudes Scientifiques)

Phase transitions are also important in the magnetic properties of materials. Consider an ordinary bar magnet made of iron for example. The reason why a bar magnet is a magnet is because each of the atoms of iron in the bar is itself a tiny magnet, and if enough of those atoms are aligned in the same direction then the entire bar will become a magnet.

A piece of Iron or other magnetic material consists of millions of tiny Ferromagnetic Domains that normally point in many different directions, canceling each other out. In the presence of an external magnetic field those domains will line up, increasing the strength of the external field. This is a phase transition mathematically similar to the freezing of water into ice. (Credit: Material s Science and Engineering)

However, if that bar magnet is heated, then at a certain temperature, known as the Curie temperature, the atoms will start to alter their orientation, they will start to point in random directions once again and the bar will lose all of its magnetic properties. Also, if a bar of iron at a temperature above the Curie temperature is placed in an external magnetic field the atoms will line up and then, if the bar is cooled back below the Curie point, the atoms will freeze in place and the bar will then become a permanent magnet.

Above its Curie temperature the atoms in a magnetic material become so energetic that they can no longer maintain the lining up that makes a permanent magnet. (QS Study)

The standard model for this phase transition from non-magnet to magnetic, and vice versa, is known as the Ising model after German physicist Ernst Ising who solved the one dimensional version of the problem in 1924. The two dimensional version of Ising’s model wasn’t solved until 1944 and the three dimensional version, obviously the one physicists are most interested in, has never been exactly solved. To date only approximate solutions, often generated by computers, are available, but these approximations leave several very important questions unanswered.

What Doctor Duminil-Copin has done is to connect the problem of magnetic phase transitions to the better understood process of percolation of a liquid through a porous material. By doing so Doctor Duminil-Copin was able to show that some of the characteristics of the two dimensional Ising model are still true in three dimensions, in particular that while the phase transition may be rapid, it is still a continuous process, not a discontinuous jump like water into ice.

As a kid I have to admit that I was fascinated by how the old fashioned coffee Percolator worked. Letting hot water drip through coffee grounds they dissolve some of the coffee flavour. (Credit: Homegrounds)

Finally when June Huh was growing up in California and South Korea he never expected to become a mathematician, in fact he wanted to become a poet. When his writings failed to get published however he decided to major in physics and astronomy at Seoul National University, hoping to become a science writer. In his senior year of college however he met a previous winner of the Field’s Medal, Doctor Heisuke Hironaka who was teaching a course in algebraic geometry. It was that course that turned Doctor Huh into a mathematician.

June Huh at the blackboard. Mathematicians just have all the fun! (Credit: The Korea Economic Daily)

Doctor Huh’s field of research is known as combinatorial analysis, basically studying the different ways that a number of objects can be put together to form a single system. One well known method of calculating these combinations replaces each object in the system with a colour and considers the colour combinations using a set of functions called chromatic polynomials. By calculating these polynomials mathematicians gain insight into the possible combinations of a set of objects and Doctor Huh has found success in his calculations by using some of the tools he learned in algebraic geometry from Doctor Hironaka.

How many different, three letter words can you make out of A, B, and C! Well to do that problem in combinatorial analysis you might want to use a Tree Diagram. (Credit: ResearchGate)

So that’s a brief glimpse at the work of this year’s Field’s Medal winners in Mathematics. Each recipient in their own way is extending of boundaries of mathematics and just simply giving us a better understanding of the way things work. 

James Webb versus the Hubble Space Telescopes, what’s the difference and just how much better are the images we’re going to get from the Webb.

I’m certain that by now everyone reading this post has seen those first four images taken by the James Webb Space Telescope (JWST) that were released by NASA on July 12th. The pictures are certainly beautiful, easily evoking the awe and sense of mystery that the Universe deserves, and it’s been reported that when NASA’s Chief Astronomer first saw them he was almost brought to tears. The question is, are they really that much better than the images provided by the Space Telescope (HST) and what new wonders of the Universe will JWST reveal that HST simply couldn’t.

The very first image pubically released by the James Webb Space Telescope (JWST) was a repeat of Hubble’s famous ‘Deep Field’ image showing thousands of galaxies from more than 10 billion light years away, and therefore more than 10 billion years ago. (Credit: NASA)

Let’s just start by comparing the size of the two telescopes and for any telescope the size that matters most is the area of the primary objective, the big lens or mirror that gathers in light for the telescope. The more light it gathers the dimmer the objects that any telescope can see. For the HST the main mirror was a nice circle with a diameter of 2.4 meters giving it a collecting area of about 4.5 m2

JWST (l) and HST (r). They may not look very much alike but while HST has already revolutionized our view of the Universe and there’s little doubt JWST will do the same over the coming years. (Credit: NASA)

Calculating the area of JWST’s objective is a bit more challenging because JWST actually has 18 hexagonal mirrors each of which can have its orientation adjusted in order to maximize the light gathered by them all. The total collection area for JWST works out to around 28.1 m2, so JWST can therefore collect about 6.25 times as much light as HST. That increase in light gathering alone will allow JWST to see things in the Universe that HST simply couldn’t.

JWST’s mirror size (r) may not be a easy to calculate as HST’s (l) but it’s bigger and will allow even dimmer and farther distant objects to be studied. (Credit: NASA)

JWST is about more than just size however for the telescope has been designed to look at the Universe not in visible light but rather in the infrared portion of the electromagnetic spectrum. And in order to see in the infrared JWST had to be placed, not in an orbit around the Earth but at a position 1.5 million kilometers away from our planet called the Lagrange 2 or L2 point where the gravity fields of Earth and the Sun perform a balancing act that will keep JWST at the same place relative to the Earth. At that distance the infrared light emitted by the Earth is more manageable.

JWST will be positioned at a point known a Lagrange 2 or L2 where the combined gravities of the Sun and Earth produce a stable orbit about 1.5 million kilometers from our planet. (Credit: BBC Sky at Night Magazine)

To really protect itself from infrared light from both the Earth and Sun however JWST has been provided with a sunshield the size of a tennis court. Thanks to its sunshield the telescope and instruments of JWST will be kept at a temperature lower than -223.2 degrees Celsius. That low temperature will allow JWST to see well into the infrared, again seeing objects that HST never could.

JWST’s Sunshield willprevent the heat of the Sun from effecting delicate instruments, keeping those instruments at a cool -223.2 degrees Celsius. (Credit: NASA)

That’s important because astronomers are currently interested in four areas of astronomy that can only be studied in the infrared. One of these areas is the atmospheric composition of all of the extra-solar planets that have been discovered over the last 20 years. The chemical elements present in a planet’s atmosphere can tell us a lot about its suitability for life. The old Star Trek line about an ‘Oxygen, Nitrogen atmosphere’ is really true, such planets are more hospitable for life and NASA is very excited about the possibility of finding such a planet. Since a planet is much cooler than its sun the spectral lines of the chemicals in its atmosphere can only be studied in the infrared. In fact JWST has already begun this effort by making its first images of the TRAPPIST-1 system.

The first planet observed by JWST was WASP-96-B and the spectra of the planet’s atmosphere indicates that there is water vapour there. (Credit: NASA)

Another area where the infrared has become important is in the stellar nurseries where stars are born. You remember the famous HST image of ‘the fingers of creation’ showing a huge gas cloud with several big and bright baby stars that have just begun to shine. The problem with the HST images is that the gas clouds forming the stars are opaque in visible light and end up obscuring the actual birth of the stars. That interstellar gas is transparent in the infrared however so the JWST will be able to see right through them to get a much closer look at the very earliest stages of a star’s life.

HST’s famous image of the ‘Pillars of Creation’ (l) and JWST’s version (r). JWST can see right through the gas clouds to where the stars are being born in greater detail! (NASA)

Perhaps the most important reason for the JWST being designed to operate in the infrared is because of the expansion of the Universe and how it causes the light from the furthest galaxies and stars to be red shifted. This phenomenon is known as the Doppler shift and it’s the same thing that causes a police siren to have a higher pitch when it’s coming towards you and a lower pitch as it’s moving away.

HST’s ‘Deep Field’ (l) versus JWST’s (r) these are galaxies being born 10 billion years ago. Is it any wonder that JWST has astronomers excited. (Credit: My Modern Met)

Since the entire Universe is expanding, the galaxies are moving away from each other, so the Doppler effect causes the light from distant galaxies to become red shifted. Since the farthest galaxies are also the oldest, because it take so long for their light to reach us at the speed of light, the light from the first galaxies to form is actually shifted all the way into the infrared.

Because of the Doppler Shift the light from the earliest galaxies is shifted all the way into the infrared where HST and ground based telescopes cannot see them. That’s perhaps the most exciting aspect of JWST because in some ways we have no idea just what it might find. (Credit: Sketchplations)

That limitation meant that HST could only see galaxies as far back as one billion years after the Big Bang, but it is expected that JWST will be able to see back to 300 million years after the Big Bang, a time when most theorists think the first stars were forming. In that way JWST will help resolve some of the question we have about how the Universe went from the enormously hot fireball of the Big Bang to the galaxies and clusters of galaxies we see today.

Because of the expansion of the Universe HST cannot see anything further back than 1 billion years after the Big Bang but JWST will see further, back to 300 million years after the Big Bang. (Credit: ZME Science)

Finally, in just the last few years astronomers have discovered the first few Brown Dwarf stars, objects that do not have enough mass to ignite hydrogen fusion like a true star but that are much larger than any planet, see my post of 22 September 2021. As Brown Dwarfs continue to contract however they do get warm, and the energy released by that contraction is emitted as infrared light, just perfect for the JWST to observe. At present only a very few Brown Dwarfs are known but it is hoped that JWST will find more, enough for us to learn more about their nature and enough for us to estimate how many there are out there wandering between the real stars.

Brown Dwarfs are a barely studied class of celestial objects because what little light they emit is in the infrared. It is hoped that JWST will allow us to learn a great deal more about these objects. (Credit: Earthsky)

That’s just a brief overview of what astronomers hope to learn by using the JWST. Who knows however, perhaps ten, fifteen years from now the thing that JWST is best known for may be something that we can’t even imagine now.

One can only hope!