As our Population continues to grow older the need to understand and treat dementia becomes greater. A new study shows how our lifestyle can have a profound effect on our risk for cognitive impairment.

Dementia is clinically defined as a progressive impairment in thinking, memory and behavior that negatively impacts a person’s ability to carry out the normal functions of life. At the same time dementia can also lead to emotional issues especially a significant decrease in motivation. Although dementia can be caused by traumatic events such as a brain injury or stroke it is most often a gradual affliction that develops slowly over time, hence it is often considered to be a disease of the elderly. The leading cause of gradual dementia is Alzheimer’s disease a neurological disorder where the connections between brain cells actually decay causing a slow decrease in the brain’s ability to function.

We all have occasional mental lapses but when they more frequent, and begin to interfere with our daily life it is a cause of concern. (Credit: Glasgow Memory Clinic)

Other diseases however, such as Parkinson’s, Huntington’s and even HIV and Mad Cow disease can also cause dementia. The fact that dementia has a large number of different causes, along with its gradual decline in mental ability combine to make both diagnosing and treating dementia extremely difficult.

Talk about scary, in advanced Alzheimer’s the brain it literally falling apart. (Credit: National Institute on Aging – National Institute of Health)

In fact there is no known cure for dementia and those treatments that are available, most commonly drugs known as Acetylcholinesterase inhibitors such as donepezil are used, often have only minor effect. In many cases the only effective measures to help patients of dementia are care-giving interventions to improve the quality of life even as the disease progresses.

All too often the only treatment for dementia is care giver support for the patient. (Credit: Eat This Not That)

Clinically dementia is described as progressing in four stages. The initial stage is known as Pre-dementia, which includes sensory dysfunction, especially the sense of smell, along with mild cognitive problems and changes in emotional behaviour.

Diagnosing Dementia at an early stage is not easy, once again we all have mental lapses. When exactly do they become signs of a serious problem? (Credit: MedicosNotes.com)

 The next stage is known as Early Onset of Dementia where the loss of cognitive ability begins to interfere with normal life. Commonly a patient has difficulty in finding the right words while speaking and planning and executing common tasks becomes more difficult. A common problem at this stage is a patient’s forgetting to take their medicine.

Forgetting to take your medication is a common problem with patients in Early Onset of Dementia. (Credit: Facebook)

Middle Stage of Dementia comes next. Here a patient is beginning to show definite signs of mental decline, to the extent of requiring some care giving help in order to carry out daily functions. Social judgment is also impaired as the patient begins to turn increasingly inward in their mental attitude.

Middle Stages of Dementia are generally the worse because the patient is still aware enough to know what is happening but no longer capable of taking care of themselves. (Credit: Kindly Care)

In the final stage of dementia a patient often requires 24-hour care both to carry out basic personnel functions as well as for their own safety. The patient may now lose the ability to recognize familiar faces and the desire to do anything at all in the real world. Even the knowledge of such basic activities as swallowing can be lost as brain functions diminish making simple tasks like eating and drinking difficult and dangerous.

In end stage Dementia the patient requires 24 hour care. (Credit: Devoted Guardians)

For many years it was thought that the primary risk factors for dementia were age and genetics. In other words older people were at greater risk in general while having a parent or other relative who developed dementia further increased the risk. Now however a new study from the Departments of Psychology and Medicine at the University of Toronto along with the Rotman Research Institute, also in Toronto, have shown clear evidence that lifestyle choices also play a major role in determining whether or not a person develops a cognitive disorder.

There are things that we can do to reduce our risk of Dementia. But the sooner we start the more effective they are! (Credit: Daily Express)

The study investigated eight different factors to see what influence they had to the odds of someone having cognitive impairment. The eight risk factors were, low education (less than a high school diploma), hearing loss, traumatic brain injury, alcohol or substance abuse, high blood pressure, smoking within the last four years, diabetes and finally depression.

Medical studies are often different to conduct because of the need to find large numbers of people to take part. Online studies have helped to solve this problem. (Credit: SOHO Learning Hub)

The study was conducted online with 22,117 participants between the ages of 18 and 89. The study subjects first answered a series of questions about their background after which they were instructed to complete four cognitive tasks. A statistical analysis of the results clearly indicate that possession of even a single risk factor increases the risk of cognitive impairment by about the equivalent of about three years of aging. That is, on average a person with a single risk factor has the cognitive ability of someone three years older than they are.

An unhealthy lifestyle can led to dementia even in young adults! (Credit: Attractions Management)

For those individuals with multiple risk factors the equivalent reduction in cognitive ability is proportional, three years of aging for every risk factor. The study also indicates that the eight factors are all equal in their effect, something that I must admit I rather doubt, I’m still trying to figure out the connection between hearing loss and dementia. Hopefully a further, larger scale study will provide more detailed data about each of the different risk factors. The study does make clear however the importance in personal lifestyle choices in preventing or at least minimizing the extent of dementia.

An Active, healthy life is possible even to an advanced age with proper precautions. Queen Elizabeth lived to 96 and enjoyed life right up to the end! (Credit: Today Show)

With the advances in medicine over the last fifty years the average human life span has increased tremendously, leading to an ever growing population of elderly people. Because of this many in the medical field think that dementia will be the biggest health problem of the 21st century. If that is so many more studies like the one from Toronto will be needed if we’re to make progress in the struggle against dementia.

Paleontology News for September 2022:

There are a lot of interesting studies and discoveries taking place in paleontology. As usual I’ll start in the distant past and go forward in time.

Most of the physics experiments we perform work just as well going backward in time as forward. So why then does the Universe seem to have a definite movement toward the future, not the past? (Credit: Medium)

The Cambrian period in geologic history marks an important turning point in the history of life on Earth because it was during that time 540 to 520 million years ago (MYA) that multicelled organisms first developed hard parts, shells, spines and eventually bones. As I’ve said many times in these posts 99% of the fossils paleontologists find are just the hard parts of the creatures of the past. So fossils are very rare from the time before the Cambrian while they become much more plentiful from that time on.

The Animals of the Cambrian period were the first to possess ‘hard parts’ that fossilized easily. This largely, but not totally, explains the well known ‘Cambrian Explosion’. (Credit: Sam Noble Museum, University of Oklahoma)

Now researchers in the UK think that they have found the earliest known animal to have a hard skeletal structure and they also think that it may be the earliest known predator to boot. The fossil was discovered in an outcrop of rocks in Charnwood Forest near Leicester in central England. The rocks that the specimen was found in date to 560 MYA, so the creature lived in a time just before the start of the Cambrian period.

Charnwood Forrest may look a bit bleak and foreboding but paleontologists and archaeologists love this kind of terrain. (Credit: The Wildlife Trusts)

As described by Frankie Dunn of the Oxford University Museum of Natural History the animal “…clearly has a skeleton, with densely packed tentacles that would have waved around in the water capturing passing food, much like corals and sea anemones do today.” O’k, so the creature wasn’t exactly a predator like a lion or a shark but remember this would be the world’s first predator, the first animal to grab another animal and eat it.

Is this Earth’s first predator. The actual fossil from Charnwood (r) and an artists illustration of what it looked like (l). (Credit: Charnwood Borough Council)

Perhaps the best part of this first predator was the name that the paleontologists gave it, Aurorlumina attenboroughii. The genus name means ‘Dawn Lantern’ and comes from the creature’s resemblance to a blazing torch. Of course the species name is an honour to the great British naturalist and broadcaster Sir David Attenborough, who actually used to go fossil hunting in his youth in the very area where A attenboroughii was discovered.

Sir David Attenborough with the fossil named for him. World renown for his explorations of life in all its diversity Sir David certainly deserves such an honour. (Credit: The Times)

Going forward in time about 200 million years we come to another critical moment in the history of life, the time when the first vertebrate fish began to walk on land. That fish is the ancestor of all the land vertebrates that came after and at present our best guess for the species that achieved that feat is Tiktaalik roseae, a flat headed lobe finned fish about a meter and a half in length who walked upon the bottom of shallow streams and ponds during the late Devonian period some 365 MYA. Looking at T roseae it is clear that, in times of drought, this fish could have lifted itself out if the water and clumsily walked to the next, larger pond or stream. T roseae was discovered at a location on Ellesmere Island in the Canadian Province of Nunavut and which lies north of the Artic Circle.

Evolutionary history in the making. Tiktaalik roseae is our best guess at being the first vertebrate animal to leave the water and walk on land. (Credit: New York Times)

Now a new specimen has been discovered at a site only 1.5 km from the location where T roseae was found and critically about 80m below the rock strata that contained Tiktaalik. That means that the new species, which has been given the name Qikiqqtania wakei, is perhaps a million years or so older. Like T roseae, Q wakei has four strong lobe fins that could have been used to ‘walk’ along the bottom. According to lead author and co-discoverer Thomas Stewart of the Biology Department at Pennsylvania State University however a careful examination of the animal’s humerus bone indicates that unlike T roseae, Q wakei was evolving to swim better, not walk on land.

He who hesitates is lost. It seems that while Tiktaalik (r & l) had the courage to move onto land Qikiqqtania (center) decided to turn around head back to deeper water. (Credit: The Independent)

Professor Stewart speculates that like T roseae, Q wakei lived in shallow streams and ponds but unlike its later cousin, which crawled onto the land occasionally, Q wakei turned around and headed back to deeper water. If that is so then Q wakei represents one of the greatest ‘missed opportunities’ in the history of life. It could have conquered the land a million years before its cousin T roseae, it could have become the ancestor of all land vertebrates, all amphibians, reptiles, birds and mammals, even us, but it didn’t. Instead Q wakei took the safe route and returned to a more familiar, more comfortable environment, letting another species be the one that changed the world.

The smoking gun of Qikiqqtania wakei turning back is in its bony fins, which show that the animal was adapting to swimming in deeper waters, not walking on land. (Credit: ZME Science)

Moving ahead about another 100 million years and vertebrates were now flourishing on the land as new species of amphibians and reptiles were evolving and it wouldn’t be long before the first ancestors of the mammals appeared. These early mammals like creatures are known as caseids and now paleontologists from the University of Freiberg and the Dinosaur Museum Altmühltal in Dekendorf, both in Germany, have described a new species of caseid that they feel very much resembles a well know modern descendant.

The ancestors of the mammals were fat bellied lizard like creatures called caseids. (Credit: Deviant Art)

The animal has been named Lalieudorhynchus gandi and it lived about 265 million years ago at the time when all of the continents were joined together into one ‘supercontinent’ called Pangaea in what is today the Lodѐve region of southern France. Based analysis on the fossil bones, which consist of two large ribs, each about 60cm in length along with a femur, 35cm long and a shoulder blade 5 cm long, the paleontologists have reconstructed L gandi as a 4-meter long pudgy lizard with a small head that lived a semi-aquatic life similar to that of a modern Hippo.

Among the largest of its kind Lalieudorhynchus gandi lived like, and even looked a bit like, a modern Hippopotamus. (Credit: Sci.news)

Like a hippo, L gandi was an herbivore, grazing on the aquatic plants that grew in lakes and rivers. When examined under a microscope the animal’s bones were found to have a spongy texture, indicating that L gandi spent much of the time in water where buoyancy would help support its several hundred kilos of mass. As one of the earliest known caseids the paleontologists hope that L gandi will teach us a great deal about this important group of per-mammalian reptiles.

The actual bones recovered from Lalieudorhynchus gandi. Paleontologists can learn a great deal about a creature from just a few fragments of its skeleton. (Credit: Twitter)

So there you have it, three stories that follow a thread through time. From the earliest animal with a skeleton to a relative of the first vertebrates to walk on land to an early mammal like creature the story of life on Earth is a long and fascinating tale.

US Congress passes the largest ever investment in actions to fight Climate Change. Have we finally reached a tipping point where humanity will actually do something to stop the worst effects of Global Warming or is this just too little too late.

After a flurry of last minute negotiations with moderate democrats Joe Manchin and Kyrstin Sinema the United States senate passed legislation that will provide $376 billion dollars for incentives to help develop green energy technologies. While the Inflation Reduction Act (IRA) does also include provisions to extend Obamacare rebates and for the first time it allows Medicare to negotiate the price of some prescription drugs with drug manufacturers it is the money to fight climate change that represents the biggest shift in Federal policy.

A lot of progressives are angry at moderate democratic senators Kyrstin Sinema (l) and Joe Manchin (r). But if we can’t find a way to work with our friends what chance do we have of getting anything done! (Credit: CNN)

As I said the bill’s provisions for green technology consists entirely of incentives, rebate money and tax deductions to help offset the cost of private individuals and corporations converting to solar or wind power generation. Rebates are also included in the bill for the purchase of electric vehicles (EVs). The IRA therefore is all carrot, money to make green technology cheaper, but no sticks, taxes or other penalties for continuing to burn fossil fuel.

The Inflation Reduction Act (IRA) contains money to help develop new sustainable energy sources but it doesn’t place any penalties on the continued use of existing coal and oil power plants. (Credit: The Leading Solar Magazine in India)

Of course the bill produced one of the biggest partisan fights ever in an era of extreme partisanship. Every republican in both the senate and the house of representatives voted against the bill claiming that it would actually increase inflation or that it was nothing but a laundry list of democratic pet projects. To be honest however what the republicans really objected to was the tax increase on large corporations that will generate $700 billion in revenue over the next ten years and offset the cost of the programs in the bill.

Solving our environmental issues is going to require money, lots of it and the only way to get that money is by taxing rich people which is the real reason republicans are against it. (Credit: Teen Vogue)

Even some climate change activists were upset at certain provisions in the bill that called for oil and gas drilling on Federal lands and mandating construction of certain oil pipelines, concessions to the petroleum industry that were necessary to gain the support of Manchin and Sinema. So the IRA isn’t perfect and even so it barely managed to squeeze through congress and to President Biden’s desk. Nevertheless it represents the biggest, in terms of money, effort by any government in the world to combat global warming.

It’s as true today as when Voltaire said 250 years ago. The point is to start getting something done, today! (Credit: Bethany United Church)

So, have we actually reached an inflection point, has the evidence for climate change finally grown so overwhelming that there are now enough people concerned about the future of our planet to get something done? Is there now enough political will to make the needed changes to achieve a sustainable society?

In math an inflection point, the point where a curve changers direction, is easy to calculate. In real life, especially in politics, it ain’t that easy! (Credit: Quora)

The weather so far this year has certainly provided further evidence. Excessive heat waves in the northern hemisphere have been occurring non-stop since late spring and even areas of the world not normally associated with high temperatures have been affected. In early July England, Scotland and Wales all set all time record high temperatures, and records in the British Isles go back all the way to the 1860s. On the 16th of July, London, the UK capital saw the temperature exceed 40ºC a number that once would have seemed impossible in a city that far north, London lays at a latitude of 50º, 30′ north, about the same as Newfoundland in North America. And with the heat has come the most severe drought the UK has suffered in decades with both agriculture and river traffic feeling the pain.

England is supposed to be in a temperate zone, not too hot, not too cold. But thanks to global warming there may no longer be such a thing, we’re all living in the tropics! (Credit: Yahoo News)

The rest of Europe has suffered as well, with record high temperatures and severe drought conditions existing from Spain, Portugal and Italy in the south to Germany and the Netherlands in the north. While on the other side of the world Japan and eastern China have also been seeing record setting heat waves. In Japan the government went to the extraordinary measure of asking the 37 million people who live in and around the capital Tokyo to conserve electricity in order to prevent possible power shortages during an unprecedented 40ºC heat wave in late June.

Even though America and Europe are getting the most press coverage Asian nations like China are also experiencing record heat waves. Climate change is no longer a statistical bump, it’s now everywhere. (Credit: MIT News)

All across the world as the heat increases the use of air conditioning rises even faster and the strain on aging power grids is quickly reaching the breaking point. Imagine the disaster that could happen if the Texas power grid collapses during a week of consecutive days at or above 40ºC as happened in July in Dallas, Houston, San Antonio and Austin. 

On the 7th of September a massive ‘Heat Dome’ over the western US brought California’s power grid to within minutes of large scale blackouts. Only quick thinking by officials along with cooperation from consumers averted the disaster. (Credit: Bloomberg Law)

But its not just heat and drought that are causing disasters this summer. Here in the US the eastern part of the state of Kentucky saw flooding that killed some 40 people and destroyed whole towns. That event was matched by massive flooding around Yellowstone National Park where flood waters forced the park’s closure for a week even while many visitors were trapped inside.

The valleys of eastern Kentucky are used to occasional flooding but the scale and severity of this year’s event are unprecedented. (Credit: UofL News)

Paradoxically drought and flooding actually go together as a couple of months of no rain can make the soil as hard as concrete so that when rain does occur rather than sinking into the ground it all runs down into the valleys and creek beds leading to a surge of water. That’s what happened in Death Valley where an unusually strong rainstorm trapped hundreds of tourists for days by rising floodwaters.

Death Valley in California rarely gets any rain but paradoxically when it does get rain that rain can lead to flooding. (Credit: UnitedKingdom Knews)

This year’s surge of climate change induced, weather related disasters are just the beginning for we are still dumping huge amounts of greenhouse gasses into the atmosphere where they will only cause further increases in the world’s temperature. Now the First Street Foundation, a non-profit think tank that studies climate change has issued their estimate for what the hottest days of summer will be like for the US in the year 2053. Currently there are ten counties in this country that can expect to see one day a year where the heat index, the ‘feels like’ temperature that is a combination of actual temperature and humidity, can reach over 50ºC, an unbearable, life threatening amount of heat. The majority of these counties are of course in the desert southwest but there are a few in the middle section of the country far from the cooling effect of the ocean.

Currently only a few US counties are considered to be in an ‘extreme heat’ zone (l). By 2053 that are of ‘extreme heat’ is expected to grow dramatically. (Credit: News Times)

The peer reviewed analysis by the First Street Foundation predicts that by 2053 the number of counties reaching a heat index of 50ºC will rise to over a thousand, a two orders of magnitude increase. The part of the country that will see the biggest increase in area will be that middle section where a swath of extreme heat will form starting with Texas and Louisiana in the south and extending as far north as Chicago. Over 100 million people will see deadly heat waves for at least part of the year while the big cities of Texas could see temperatures over 40ºC for months on end.

Texas has always been hot, but before long it may simply become unlivable. (Credit: Fox Weather)

Meanwhile another heat zone will form along the east coast  starting in Georgia and South Carolina and reaching my home here in Philadelphia. Every part of the country can expect increased heat as well, with what are today the 7 hottest days of the year extending to become the 18 hottest days in nearly every locality. The effect that this increase will have on other weather conditions, drought or flooding, tornadoes and other severe storms can only be guessed at right now.

And with the increase in heat comes an increase in severe weather like tornadoes. (Credit: Texas A&M Today)

And the First Street Foundation is not the only voice crying out in alarum. A leading Earth Sciences Professor at University College London named Bill McGuire has recently published a new book entitled ‘Hothouse Earth: An Inhabitants Guide’ that outlays his vision for our weather future. According to Professor McGuire severe climate change is inevitable and irreversible. McGuire is quite correct when he states, “And as we head further into 2022, it is already a different world out there. Soon it will be unrecognizable to every one of us.”

Maybe this is a book we should all read. I’ve got my copy on order! (Credit: Amazon.com)

So the question becomes, is the Inflation Reduction Act with its $376 billion to fight climate change nothing but, too little too late. Or has humanity finally faced the fact that climate change is an existential threat that we must deal with and the IRA just the first step in an ever growing effort to save the world.

With a stroke of Joe Biden’s pen the IRA becomes law but it will take more, a lot more and not just from the Federal government, from all of us! (Credit: ABC News)

Only time will tell, and I don’t think we’re going to have to wait until 2053.

Researchers at the University of Houston have discovered a new Semi-Conductor material with characteristics that make it far superior to Silicon. And what makes Semi-Conductors so special anyway?

Historians have named several periods of the past by the material that typified the industry of the time, whether it be the Stone Age or Bronze Age or Iron Age. In keeping with that methodology our present period of history should then be called the Silicon Age. Computers and other electronic devices are everywhere nowadays, you carry your smartphone with you where ever you go but there are dozens of other electronic devices in your home as well. Your oven, washing machine, refrigerator even your car all have integrated circuits in them while of course your TV and computer are virtually nothing but Integrated Circuits made of silicon.

Out world today is built not of stone or steel but of electronics, and that means silicon. (Credit: Electrical Technology)

All of that is due to silicon’s properties as a ‘semi-conductor’ that is silicon is a material that doesn’t conduct electricity as well as a conducting metal, say copper or iron do, but it does conduct electricity better than an insulator like rubber or wood do. With all of the silicon electronics now being manufactured it’s rather surprising therefore to learn that silicon isn’t really all that good of a semi-conductor.

Silicon in its pure state. Silicon is one of the most abundant elements on Earth so its use in electronics is based more on its being a cheap semi-conductor rather than a good semi-conductor. (Credit: Wikipedia)

Silicon’s biggest problem is that while it does conduct electricity fairly well it is very bad at conducting heat away from the electronics. That’s why so many of our electronic devices get so hot, and require extra cooling systems to remove that heat before it reduces both the performance and lifespan of those electronics. Even as a semi-conductor however silicon is simply not as good as its rivals germanium (Ge) or gallium-arsenide (GaAs).

The first transistor, built back in 1947, used Germanium as its semi-conductor because Germanium is just a better semi-conductor. (Credit: Computer History Museum)

The primary factor of how good a semi-conductor material performs is called its carrier mobility, which is measured in units of centimeter-squared per volt second. There are actually two kinds of mobility, one for the electrons themselves called electron mobility and the other is ‘hole’ mobility, the mobility of places where an electron should be but isn’t. In a semiconductor a hole will actually behave like a positively charged electron. While the electron mobility of silicon is fairly good at 1400cm2/V*s, its hole mobility is much lower, only 450 cm2/V*s.

Carrier mobility is the basic property that makes a semi-conductor useful in electronics. Like all semi-conductor materials the carrier mobility in silicon is heavily dependent on temperature. (Credit: Quora)

So why do we use silicon then? As you might guess cost is the major factor, germanium and gallium-arsenide are both considerably more expensive and gallium-arsenide is very toxic to boot, adding further to the cost of using it. Because of these drawbacks materials scientists are always on the lookout for new semi-conductor materials in the hope of finding a replacement for silicon.

Despite being more expensive and dangerous to make Gallium Arsenide continues to be used as in electronics and solar cells simply because it is a much better semi-conductor material. (Credit: Phys.org)

Now researchers at the University of Houston have identified a new semi-conductor material that not only surpasses silicon in performance but may actually approach the theoretical limit to semi-conductor performance. The material is called Cubic Boron-Arsenide (c-BAs for short) and is a crystal grown from the two elements Boron and Arsenic. To date only tiny crystals of c-BAs have been manufactured, and those have contained impurities, but recent measurements of c-BAs have shown that it possesses ten times the thermal conductivity of silicon while at the same time having a carrier mobility in excess of 1600 cm2/Vs for both electrons and holes. Based on their measurements the researchers also think that, if the impurities were removed, carrier mobility could reach as high as 3000 cm2/Vs.

Cubic Boron Arsenide is the newest semi-conductor material being studied right now. So far its properties are better than any other known material. The question is of course cost! (Credit: American Physical Society)

Of course right now c-BAs is even more expensive than Ge or GaAs but to date very little research has been carried out to see if it can be manufactured on an industrial scale. If it can then c-BAs may become the new silicon, pushing the performance of electronics still further while improving their reliability and life span.

The like expectancy of electronics, known as the Mean Time To Failure or MTTF is heavily dependent on temperature. If c-BAs can improve the life span of our electronics that may help offset its greater cost. (Credit: JetCool)

Ok, so what is it about these semiconductors that make them so valuable in electronics. To answer that question we first have to discuss the process of doping of a semiconductor. As I said above, semi-conductors will allow both electrons and electron holes to move through them, but not very well. If a very small amount of another element is mixed in however, about one atom of the other element for every 100 million atoms of silicon, that mobility can be greatly increased. For example adding that tiny amount of phosphorus to silicon increases its conductivity by a factor of 10,000.

Even a small amount of doping can greatly change of the conductivity of a semi-conductor. The ability to so easily control the electrical properties is what makes semi-conductors so useful. (Credit: Halbleiter.org)

This process is called doping and whether the increase is for electrons or holes depends on what material the silicon is doped with. Doping with phosphorus or antimony for example creates N-type silicon increasing the electron mobility. Doping with Boron or indium on the other hand results in P-type silicon with increased hole mobility. When a slice of N-type silicon is placed against a slice of P-type a semiconductor junction is formed where the free electrons can move into the holes but the holes cannot move into the electrons. In such a N-P junction electric current can only flow in one direction, a device known as a diode. Two such junctions, whether NPN or PNP form a transistor that can be switched ON or OFF or used to amplify a signal.

PNP and NPN transistors act as tiny switches, turning ON and OFF millions of times a second. That simple function has made them the most important devices in the world today. (Credit: Electronics Hub)

Semiconductor junctions can also both convert electric current to light, a Light Emitting Diode or LED, or convert light to electric current as in a solar cell. They can also convert heat to electricity or electricity to heat, that last part is easy. With all of its many applications it’s no wonder that materials scientists will continue to search for better, and cheaper semi-conductors.