Every year representatives from nearly 200 countries come together at a chosen location to discuss efforts toward fighting global warming and the harmful changes in our planet’s climate caused by it. The first such conference was held in 1995 and given the title COP 1.
Each succeeding forum has added one to the number with COP 20 back in 2015 generating the famous ‘Paris Accord’ where a target figure of a rise in global temperature of no more than 1.5º C above pre-industrial levels was pledged by every nation in attendance. However no concrete plan to eliminate greenhouse gasses such as CO2 and Methane was agreed upon in Paris and every conference since then has basically failed to stop the ever increasing rise in fossil fuel emissions.
Last year’s COP 26 in Scotland could not even reach an agreement on how or when to eliminate the use of coal, the worst emitter of CO2. Plans to issue a strong final statement on ‘Phasing Out’ coal were scuttled by India, the world’s forth largest emitter of CO2 but a nation still considered to be ‘developing’ and which in fact has plans to greatly increase its fossil fuel emissions. The wording that was finally agreed to was to ‘Phase Down’ coal use instead of ‘Phase Out’.
With so much contention making it impossible to develop any realistic plan to fight global warming it not surprising that the negotiators at COP 27, held in the Egyptian resort city of Sharm el-Sheikh on the Red Sea, spent more of their time tackling a different part of the climate problem. The negotiators concentrated their efforts on the question of how to help those of the poorer countries of the world who are already suffering from climate change. Over the last year the flooding in Pakistan and Niger coupled with severe droughts in east and south Africa have brought attention to the fact that many of the countries that produce the smallest amounts of greenhouse gasses are enduring some of the worst consequences of global warming.
For the past thirty years these poorer countries have been pushing the richer countries, who just happen to be the biggest polluters, to establish a reparations fund that will help pay the costs of disaster relief. And for the past thirty years the richer countries have resisted signing a blank cheque that could keep them paying into this fund for decades. Another complication was the status of China, which back in 1995 was still a small economy producing only a small amount of greenhouse gasses but which since then has become the world’s second biggest economy and the biggest emitter of both CO2 and methane. So should China contribute to this fund or should it, and this would be a real farce, actually benefit from such a fund?
Right at the start of COP27 the European Union signaled that they were now ready to support the reparations proposal but the United States was still reluctant. When the US’s chief negotiator, former US Senator John Kerry tested positive for Covid-19 it appeared that the entire conference might end without any real progress.
Only a willingness to extend the negotiations through the weekend allowed the conference to come to an agreement. The world now has an established fund, endowed by most of the world’s richer nations, to help poorer countries pay for the damage done to them by climate change. Before you start thinking that a tremendous achievement was made however bear in mind that the richer nations have yet to announce how they will contribute and for how long and the status of China has yet to be decided.
The worst part however is that by appearing to make progress on who will pay for the damage caused by climate change absolutely nothing was achieved toward reducing, let alone eliminating the use of fossil fuels for energy production. So the release of greenhouse gasses is going to continue, in fact increase, increasing both the severity and length of the whole problem.
The final report from COP27 did restate the goal of preventing global temperature rise from exceeding 1.5ºC over pre-industrial levels but it also restates that coal use is to be ‘phased down’ not ‘phased out’. The world still has no agreement on or plan for how to stop making the problem of climate change worse.
And while the politicians dither more greenhouse gasses are being dumped into the atmosphere every day causing the world’s temperature to continue to rise bringing with it ever more severe climate crisis.
It was Aristotle who first described what we now call the ‘Five Senses’, that is Sight, Hearing, Smell, Touch and Taste. Now for we humans sight dominates, we are very visual creatures with our other senses taking a secondary roll. Even our language is sight oriented, we ‘see what someone else is talking about’ or a smart person can be referred to as ‘bright’.
Aristotle thought that animals shared the same five senses as we did but today we know that the animal kingdom has members for whom senses other than sight predominate, like dogs whose view of the world is based more on smell than sight or an owl who hunts its prey by sound rather than sight. What Aristotle never imagined was that some animals could possess senses that we humans have no awareness of, the echolocation of dolphins and bats or the electrical senses of many species of fish.
‘An Immense World’ by author Ed Yong is all about the variety of senses animals possess and the way those senses effect the animal’s view of the world. Early on in ‘An Immense World’ Young introduces the term ‘Umwelt’ coined by the German biologist Jakob von Uexküll in 1909 to describe the perceptual world that each species would have based upon those senses it possesses and how it uses them to survive. This concept serves as a focal point for Yong’s broad survey of animals and their senses.
Now throughout my life I have read about or watched TV documentaries about different animals and how they use their different senses so I already had a good understanding of how bees can see in the ultraviolet portion of the electromagnetic spectra or how rattlesnakes can see in the infrared. So I was already familiar with a good bit of the things ‘An Immense World’ describes. Nevertheless in ‘An Immense World’ Ed Yong is so thorough and detailed that I still learned a great deal.
In ‘An Immense World’ Ed Yong proceeds from the most familiar of the senses, like vision and first talks about how that sense differs in other animals, like colour blindness in dogs and most other mammals. As each kind of animal is mentioned we get a little further from human senses, like the compound eyes of insects or the way clams simply have a series of photosensitive cells along the rim of their shells. For each species the way they use their sight is discussed, whether it be to find prey, escape predators or even find a mate. Yong then proceeds to each human sense in turn, hearing, smell, touch and taste and starting with how we use that sense he describes how that sense can differ in other creatures and how they use it.
It’s after spending several chapters concerning the senses we possess that ‘An Immense World’ goes on the describe those senses that were unknown to Aristotle, echolocation or sonar, and electrical senses like those of the electric eel, although many other fish also possess it as a sense. The ability of some species to actually detect magnetic fields, usually the Earth’s magnetic field to use in migration, is given a whole chapter to itself because it is still the one we know the least about. The penultimate chapter is about how every species, even we humans, use all the senses they possess together in order to understand the world around them and survive in it.
Finally Young uses the last chapter to describe how we humans, in altering the world to suit ourselves, are attacking the senses that other species use to live. Light pollution is disrupting the lives of nocturnal animals while noise pollution and chemical pollution are hurting those species that ‘see’ the world through sound or smell.
I do have a couple of small criticisms of ‘An Immense World’. As someone who spent most of his career as an electrical engineer I found a couple of tiny factual errors in the chapters on the electrical and magnetic senses. During one of his interviews with an ichthyologist Yong places his hand in a tank with an electric eel and gets a 90V shock that he describes as being electrocuted. Well, technically you’re only electrocuted by a shock if you die, not when you just get hurt. Then, in the sections on the electric and magnetic senses Yong mentions how the senses of sound and smell have a built in delay because they travel at a certain speed while the electromagnetic senses are ‘instantaneous’. Well no, electromagnetism may be a lot faster than sound or scents but it’s not instantaneous, it travels at the speed of light. I know I’m being a bit pedantic but still those are still errors.
One other thing I would have liked to see was a chapter on the senses possessed by plants, which is actually a growing field of research. We know very little about how plants sense the world but we’re finding out more every day. Many, possibly most plants are light sensitive but every day researchers discover more and more evidence of the sense of touch in plants, think of how a Venus Fly Trap knows when an insect has landed in one of its traps. A quick review of plant senses would have been a great addition to the book.
Nevertheless ‘An Immense World’ is a wonderful book, full of details about the endless variety of life here on Earth. Whether you’re familiar with the way animals senses work or this is an entirely new subject you’ll learn a lot, and do so in an enjoyable way, if you read ‘An Immense World’ by Ed Yong.
Back when I was in college the standard model of Cosmology consisted of a Big Bang that happened between 10-15 billion years ago. That detonation led to an expansion of the matter in the Universe that could be seen in the red shift of light coming from distant galaxies, the rate of that expansion was given the name ‘Hubble’s Constant’.
Even as the Universe as a whole expanded locally matter clumped together due to gravity to form the galaxies and stars we see today. The model also predicted that the force of gravity between the galaxies would slow down the rate of expansion so that today Hubble’s ‘Constant’ would be smaller than it was billions of years ago.
The big Question, back when I was in college, was whether or not the force of gravity was strong enough, was there enough matter in the universe to eventually bring the expansion of the Universe to a stop billions or even trillions of years from now. If that happened the Universe would begin to contract until there was a ‘Big Crunch’. Or if there wasn’t enough matter in the Universe then it would just expand forever with all of the stars dying out as they ran out of fuel. A cold, empty Universe that was paradoxically called ‘Heat Death’ because the entire Universe would be at thermal equilibrium so that no work could be done.
Oh, and then there was something wrong with the way the galaxies behaved, their dynamics. They acted as if they contained more matter than we could see, so astronomers called the problem ‘Dark Matter’. The astrophysicists had a few ideas what Dark Matter could be but really had no evidence to back up their hypothesizes.
Things began to change in the late 1990s as two groups of astronomers led by Adam Riess and Saul Perlmutter tried to answer the question of whether the expansion of the Universe was slowing fast enough to come to a stop. What they found was that the expansion wasn’t slowing at all, it was accelerating.
Riess and Perlmutter used observations of Type 1 supernovas to make their measurements, see my post of 18 January 2020. Type 1 supernova occur when a white dwarf star steals matter from a nearby companion star. Eventually the white dwarf steals too much matter and explodes as a Type 1. Since all Type 1 supernova happen at the same mass our theories predict that the supernova explosions should all have the same total amount of energy and can be used to measure the distances to other galaxies. That is, if all Type 1’s are the same absolute brightness then if one Type 1 supernova looks brighter it must be closer, if another looks dimmer it must be further away. Whatever it was that was that was pushing the galaxies apart was given the name ‘Dark Energy’ in correspondence with Dark Matter although it is really more of a pressure than an energy.
Another, more technical problem also came out of the work of Riess and Perlmutter, the value for Hubble’s Constant that they measured over the last few billion years differed slightly from the value obtained by the astrophysicists who studied the Cosmic Microwave Background (CMB), the leftover radiation from the era of the Big Bang itself.
Now a group of astronomers led by two former students of Riess, Dillion Brout of Harvard’s Center for Astrophysics along with Dan Scolnic of the Department of Physics at Duke University have published a greatly expanded data set of over 1500 Type 1 supernova observations, ten times as many as Riess and Perlmutter gathered. This study has been given the name Pantheon+ and has produced a value for Hubble’s constant over the last 10 billion years of 73.4 kilometers per second per megaparsec with an uncertainly of only 1.3%. This value is significantly larger than the value obtained from the CMB for the early Universe 13 billion years ago.
These measurements give us the most precise account yet of the effect that Dark Energy has had on the evolution of the Universe. It also solidifies the discrepancy between the measurements of Hubble’s constant using Type 1 supernova and those made using the CMB to a better than one in one million chance of being caused by statistical error.
So what is going on here? What is causing our models and measurements to differ? Well the simplest answer would be that ‘Dark Energy’ has not been a constant effect throughout the history of the Universe, it’s dynamic, it changes and the results of Pantheon+ can give us some clues as to how it changes with time.
The other possibility is that we’re seeing the first evidence of some completely unknown factor effecting Dark Energy. As you can imagine cosmologists are hoping to avoid that possibility. After all, currently they have no idea what Dark Energy is or if it changes. To assume there’s a yet completely unknown factor effecting Dark Energy would just square the problems we have now.
And then there’s the Dark Matter that astrophysicists first proposed before Dark Energy but which they still have no clear idea of what it is. Dark Matter was supposed to account for why galaxies, like our own Milky Way, are observed to spin faster than they should based on the matter we can see and Newton’s laws of gravity.
Dark Matter therefore was predicted to be some sort of heavy sub-atomic particle that did not react with the electromagnetic field, that is light, and that therefore we could not see. Physicists have been searching for that exotic particle, called a Weakly Interacting Massive Particle or WIMP, since the 1980s and have so far completely failed.
In fact a growing minority of physicists are ready to give up on the whole idea of Dark matter and instead propose that there is something wrong with Newton’s laws of gravity. There are currently many ideas floating around as to how Newton might be wrong and these theories have been given the generic name of MOdified Newtonian Dynamics or MOND.
Now a new study of Open Star Clusters in our Milky Way has provided evidence backing some of those MOND theories. The paper comes from researchers at the Helmholtz Institute of Radiation and Nuclear Physics at the University of Bonn in Switzerland.
Open star clusters are the maternity wards of galaxies where gas clouds contract under gravity to give birth to stars. The best-known example of these open clusters are the Pleiades but many are known throughout the Milky Way and neighboring galaxies. After the stellar nursery has given birth to all the stars it can the grouping stays together for a few tens of millions of years as it orbits around the center of the galaxy. Eventually however tidal forces from the billions of other stars in the galaxy cause the stars in an open cluster to drift away, spreading across the galaxy. In fact our own Sun must have once been a member of such a cluster only to have drifted away billions of years ago.
And just as here on earth we have two tides, one rising as the Moon is high in the sky and the other 12 hours later, the tides of the galaxy will pull the stars in an open cluster in a forward direction, relative to its motion around the galactic center, and in a backward direction.
Now Newton’s laws predict that the two tides will be of equal strength, with an equal number of stars leaving in each direction. Certain versions of MOND however predict that the forward tide should be just about twice as strong as the backward so that twice as many stars should drift away in that direction.
Needless to say trying to determine just which stars that are near an open cluster were actually once members of that cluster is no easy chore but the team from the University of Bonn succeeded with five open clusters and their results, published in the Monthly Notices of the Royal Astronomical Society strongly indicate that some variety of MOND is at work here.
So astronomy and astrophysics today have a couple of really big problems to be solved. Wouldn’t it be interesting if the solution to one problem is also the solution to the other? I mean, what if MOND is that extra factor effecting Dark Energy? We’ll just have to wait and see.
In was during the 1970s that the science of geology was revolutionized by the theory of Plate Tectonics, the idea that the surface of the Earth was cut up into a number of plates that moved relative to each other. As those plates slide past, or butt up against each other mountains rise, volcanoes erupt and earthquakes are generated. There are even places where one plate slides over another causing a ‘subduction zone’ where the deepest parts of the oceans occur. The theory of plate tectonics explains so much of what we see in the rocks around us that it is central to the entire study of geology.
Central perhaps but like most theories plate tectonics is incomplete, there are still some details to be worked out and geologists around the world have been kept busy trying to understand exactly how plate tectonics works. This week’s post is about two such studies.
The first study deals with those subduction zones and how they are generated. The study comes from the Instituto Dom Luiz at the University of Lisbon Portugal along with the supercomputer at the Johannes Gutenberg University in Germany. And, like many scientific studies nowadays, this one uses a computer model to analyze more data than any human being could ever manage to do. In fact the study would not have been possible even with the supercomputer had it not been for the recent development of a much more efficient computational code by the programmers at Johannes Gutenberg.
Combining the geological expertise of the University of Lisbon with the computing power of Johannes Gutenberg the program was applied to the problem of the development and evolution of subduction zones. For the first time all of the various forces at play at the interface of two plates were taken into account in order to calculate a 3D model of a of how one plate pushes another beneath it down into the Earth’s mantel.
Beginning with the many trenches that make up part of the Pacific’s ‘Ring of Fire’ the researchers found that subduction zones follow a rhythmic ebb and flow, with existing trenches slowing in their growth and then being followed by new ones near the same locations. Having used their new model to study the trenches in the Pacific the geologists now hope to apply it to other areas of the Earth like the Caribbean, the Antarctic and even the Atlantic Ocean off of Lisbon. In fact there is evidence that a new subduction zone has started in the waters just off of Portugal, one that may be the beginning of a new ‘Ring of Fire’ that could someday encircle the entire Atlantic Ocean!
Even as one group of geologists learns more about one facet of tectonic activity another, led by scientists at Trinity College in Dublin, Ireland is investigating how plate tectonics contributed to one of the most destructive volcanic events in the history of Earth. Known as the Toarcian period the event happened about 183 million years ago during the Jurassic period. At that time massive volcanic eruptions poured enormous amounts of carbon dioxide into the atmosphere and we all know what that means, global warming and environmental destruction leading to a mass extinction event.
Performing a chemical analysis of samples of mudstone obtained from a 1.5 km deep borehole in Whales researchers were surprised to find that the massive upwelling of magma that triggered the Toarcian event occurred at a time when the movement of the tectonic plates had slowed almost to a stop. That evidence seemed to run counter to common sense, wouldn’t magma pushing up from the Earth’s interior lead to increased tectonic activity?
But perhaps this is one of those occasions where common sense is simply wrong. Perhaps significant tectonic activity acts as a pressure relief valve releasing energy from beneath so that the magma remains deep below the surface. If that were the case then it would be when the movement of the tectonic plates slows that the magma underneath can build up the pressure to upwell and cause destructive geological events like the Toarcian.
The study itself will have to be considered by other geologists but one thing is certain, our planet is a complex, very dynamic place and we still have a great deal to learn from it.
On November 16th, after more than six years of problems, delays and cost overruns, to say nothing of two last minute hurricanes, NASA’s massive Space Launch System (SLS) with it’s Orion man capable capsule was finally launched from Cape Kennedy’s pad 39B. The Artemis 1 mission as the combination is officially designated is an unmanned test of the equipment that will in just a few years take human beings back to the Moon after a more than 50 year absence. In many ways Artemis 1, and its manned successor Artemis 2, are a reboot of the Apollo 8 mission that first took humans to orbit the Moon.
All of this was supposed to happen back in 2016, the huge SLS rocket that serves as the lunch vehicle was going to be easy to design and build. After all the main engines were the same RS25 engines that powered the space shuttle and the solid fuel boosters on each side of the rocket’s core stage were just longer versions of the shuttle’s solid fuel boosters. The problems just kept multiplying however and the delays, and cost overruns caused the program to take twice as long and cost nearly three times what was originally allocated.
Even once the SLS got to Cape Kennedy the problems continued to pile up with hydrogen fuel leaks alternating with the threat of hurricane winds to cause a series of small delays. Even on the day of launch itself a small hydrogen leak was detected after the SLS had been fueled that required a team of engineers to go out to the pad and tighten some valves on the rocket before liftoff.
Still when the countdown went to zero and the engines ignited the SLS, the most powerful rocket ever built, that’s in terms of initial thrust, performed flawlessly, lifting the Orion capsule, its European Service Module (ESM) along with an Interim Cryogenic Propulsion Stage into Earth orbit. So powerful was the takeoff that the mobile launch pad, which had carried Artemis back and forth to the Vehicle Assembly Building several times, was damaged.
Once Orion was in orbit the SLS had completed its task, ten years of costly development for a mere eight minutes of performance. Now the engineers will have to go over the data thoroughly but the big rocket certainly proved that it could do the job it was designed for. Approximately forty minutes after achieving orbit the Interim Cryogenic Propulsion Sage fired its engine for an eight minute burn that sent the Orion capsule and the ESM on an Earth escape trajectory to the Moon.
The rest of the mission is up to the Orion capsule and it’s service module, which was designed and built by the European Space Agency (ESA) as their contribution to the Artemis program. According to the mission plan the spacecraft was to pass behind the Moon and there perform a four minute burn of the ESM’s engine to place Orion in a lopsided retrograde orbit around the Moon that would bring the spacecraft closer than 100 kilometers to the Lunar surface and take it further than 60,000 kilometers. This burn was successfully carried out on the 21st of November.
O’k, so what’s a retrograde orbit and why it that important for Artemis? Well if you take your right hand, point your thump up while wrapping your fingers around, see image, and imagine that your thumb is the Sun’s north pole then virtually everything in our Solar System orbits, rotates, spins around the Sun in the direction your fingers point, their angular momentum is counter-clockwise.
Only a few objects, like the spin of Venus on its axis and several of Jupiter’s smallest, and farthest moons rotate in the opposite direction, clockwise and are said to have a retrograde motion. Now the engineers at NASA wanted Orion to be put into this unusual orbit in order to push it a bit, to see if the spacecraft and the ground systems tracking it, could handle the extra strain. This mission is intended to test the equipment after all.
So the plan was for Orion, with its ESM to orbit the Moon until the 1st of December when a final burn of the ESM’s engine set the spacecraft on a return path back to Earth. Reentry and splashdown are scheduled for December eleventh off the California coast in the Pacific Ocean.
If the mission ends as successfully as its gone so far then the Artemis 2 mission is scheduled for sometime in 2024. That mission will be manned and for the first time in fifty humans will return to Lunar Orbit although not actually land on the Lunar surface. That event is going to have to wait for Artemis 3 and the development of a landing module.
It’s been along time since humans last walked on the Moon but the Apollo program that put men on the Moon had no plan for a follow up, no intention of staying on the Moon. Artemis may be slower but it is designed as a step-by-step program leading to a permanent base on the Moon. This time we plan on staying.