Astronomy News for September 2023: The James Webb Space Telescope begins to show off what it can do.

Lifted into orbit back in (December of 2021) the James Webb Space Telescope (JWST) spent its first months in orbit calibrating its instruments while the world’s astronomers eagerly waited. Well JWST has been in operation for a little over a year now and NASA has taken the opportunity to release some of the more spectacular images sent back by the space telescope.

It was almost two years ago the the James Webb Space Telescope (JWST) was launched in orbit. Now astronomers are released some of the first results, the first discoveries made by this largest and most advanced space telescope. (Credit: Safran)

First a bit of a reminder, JWST operates as most large astronomical telescopes do by taking long exposure digital images of whatever astronomical object it is studying. Most of those ‘deep space’ objects are actually very dim and the only way to get good images is to open up the telescope’s camera and allow the light to gather photon by photon over a long period of time. The images are then computer enhanced to bring out the details the astronomers are interested in. In other words the pictures released by NASA are not what you would see if you actually looked into a telescope at the same object.

In astronomy time exposures can make dim objects brighter and allow objects that are invisible to become observable. (Credit: Photzy)

Another big difference between JWST and other telescopes, even the Hubble Space Telescope is that JWST views objects primarily in the infrared portion of the electromagnetic spectrum. This allows JWST to see details that are completely invisible to our eyes. That is the reason that JWST had to be placed more than a million kilometers from the Earth because the infrared light coming from both the Sun and the Earth would blind it if it weren’t protected. Again the digital images taken by the JWST in the infrared are then converted by a computer into visible images for astronomers, and the rest of us to see.

The difference between Hubble’s image of the Pillars of Creation in visible light (l) and the JWST image in the infrared is obvious. The dust that obscured Hubble’s image is gone in the JWST image allowing astronomers to actually see stars being born. (Credit: www.asc-csa.gc.ca)

The first set of images released from the JWST team at (John Hopkins Physics Lab) was of the well known ‘Whirlpool Galaxy’ often referred to as Messier 51 or just M51. At a distance of 27 million light years from Earth this galaxy is a favourite target of amateur astronomers not far from the Big Dipper in the sky. While M51 is a typical spiral galaxy it happens to be facing our galaxy almost head on so that our view of its spiral arms is simply magnificent. A very beautiful image of M51 was taken by Hubble a dozen years ago and astronomers have been itching to get a view with JWST ever since.

Hubble’s image of the Whirlpool galaxy only succeeded in making astronomers hungry for more. (Credit: ESA/Hubble)

Now they’ve done just that and the image is beyond expectations. One of the reasons JWST operates in the infrared is that infrared light can pass through the gas and dust that tends to blur the details in the spiral arms of galaxies like M51 in visible light. That means that JWST sees deeper into the galaxy, imaging structure never seen before. The same is also true of the small dwarf galaxy NGC 5195 located at the end of M51’s ‘tail’ and whose gravitational field is actually responsible for much of the structure of the Whirlpool’s spiral arms. Images such as JWST’s of the Whirlpool not only are beautiful but they give astrophysicists a lot of data to use in their efforts to understand how galaxies are structured and how they change with time.

JWST’s image of the center of the Whirlpool galaxy is simply breathtaking in its detail. (Credit: Mint)

The next astronomical object that the JWST team released images of was a lot closer to home, a mere 2,600 light years away. The Ring Nebula or M57 as it is known is located in the night sky near the bright star Vega and is in many ways a glimpse into the future fate of our own Sun. The star at the center of the ring was once about the same mass as our Sun but about a billion years ago it used up all of its hydrogen fuel and began to burn helium. In order to do that the star’s core had to get smaller and hotter which caused its outer regions to puff up making the star a ‘Red Giant’.

Probably the best known Red Giant is the star Betelgeuse in the constellation of Orion. The star is not only larger than our Sun it is actually larger than the orbit of Jupiter!!! (Credit: Brian Koberlein)

Then, less than a million years ago the star started to run out of helium so again its core got smaller and hotter, so much so that its outer regions were ejected from the star into interstellar space. This material was mostly ejected from the star’s equatorial region so it formed a ring around the original star, the Ring Nebula.

The JWST actually took two images of the Ring Nebula with its different instruments. On the right is the view from the Near Infrared NIRCam camera and on the left is from the Mid Infrared MIRI camera. (Credit: Prestige Online)

Since the ring itself is made up of gas and dust JWST’s ability to see in the infrared makes it the perfect instrument with which to study M57. The images taken by JWST show an enormous amount to detail that was never seen before including about 20,000 dense clumps of matter and a halo of 10 concentric arcs with 400 spikes. JWST also discovered that the central star causing the ring is not alone, it has two smaller companion stars, one about 35 astronomical units (AU) from the central star, an astronomical unit is Earth’s distance from our Sun, and the other more distant at 14,400 AU.

Because the distances in space are so huge astronomers use units like the Astronomical Unit, the average distance between the Earth and the Sun. (Credit: Study.com)

Like the images of the Whirlpool galaxy astrophysicists will have plenty to keep them busy analyzing what JWST has found at the Ring Nebula. Nebulas like the ring are not only important because they show our Sun’s future but also because the material ejected from such nebula is how heavier elements like Oxygen, Carbon, Nitrogen and Silicon get spread around the galaxy so that they can form planets like our Earth.

With the exception of Hydrogen and Helium all the other elements are manufactured inside stars. Planetary nebula like the ring nebula are one way those elements are released into the galaxy. (Credit: ZME Science)

The final set of images taken by JWST are of Supernova 1987A (SN1987A), the closest supernova to Earth in the last 400 years and the only supernova to date for which we have a picture of the star taken before it blew up. Supernova are rare events that only happen when a huge star, at least 20 times the mass of our Sun has used up all of the nuclear fuel available to it. When that happens the star’s core collapses into a neutron star or even a black hole. The rest of the star explodes in one of the most powerful events in the Universe.

Another comparison of Hubble (r) versus JWST (l). The greater detail in the JWST image is obvious. (Credit: Business Insider)

Obviously studying supernovas is a lot of fun but the problem is that they are so rare that detailed data is hard to get, most of the supernovas observed by astronomers are in galaxies billions of light years away. That’s why astronomers were so anxious for JWST to observe SN1987A. The Hubble space telescope had been observing the supernova for years and had watched as the shock wave from the explosion caught up to and slammed into material ejected from the star before it went nova.

The arrow in the top image points to the star that became the nova SN1987A. Bottom left is the star as it shined while going Nova and the bottom right is the JWST image today. (Credit: Reddit)

The images from JWST show that collision in even greater detail with a cluster of material that looks like a string of pearls. The JWST will continue to observe the dynamic changes around SN1987A while also searching for the neutron star that must have formed in the explosion but which so far has eluded detection.

An object as massive as the Sun but is only the size of a city is a neutron star. SN1987A should have formed such an object but we have yet to detect it. (Credit: Wikipedia)

The images released by the team (at Johns Hopkins) are just the beginning of the marvels that astronomers hope JWST will reveal in the years to come. Just as Hubble altered and illuminated our view of the Universe JWST is sure to do the same.

Book Review: ‘The Dent in the Universe’ by E. W. Doc Parris

Last year I published a review of a book entitled ‘Recursion’ by author Blake Crouch. In that review I praised ‘Recursion’ for having a very unusual slant on the old SF theme of time travel. Like ‘Recursion’, the plot of  ‘The Dent in the Universe’ by author E. W. Doc Parris also concerns a very different, and interesting kind of time travel, although as you might guess the results are every bit as chaotic.

Cover Art for “A Dent in the Universe” by E.W. Doc Parris. (Credit: Amazon)
Author of ‘A Dent in the Universe’ E. W. Doc Parris. (Credit: Amazon)

One Corporation is a high-tech company operating out of California’s silicon valley in the near future, the 2030s. The company specializes in developing video games and their chief claim to fame is the sChip, an integrated circuit that uses Quantum Entanglement to achieve Faster Than Light (FTL) communications with other sChips. This property allows gamers all over the world to play One Corporation’s video games together without any nasty time delays because of distance. (Actually there are some theorists who think something like that might be possible.)

Einstein called Quantum Entanglement “Fuzzy action at a Distance.” but could it be faster than light? (Credit: The Quantum Atlas)

About ten years after the sChip is first introduced an accident causes a large portion of the network to crash, a gamer spilled his coke onto his terminal. An investigation by One Corporation’s chief scientist, the guy who invented the sChip in the first place, reveals that the crash originated when the coke spilling gamers sChip sent a conformation signal to his buddy’s sChip BEFORE it was asked for the conformation. It seems sChips are not only capable of FTL they can send messages into the past.

Time Travel is one of the oldest and most often used plot device in Science Fiction. In fact it’s been used so often that you have to be very cleaver to come up with a new approach to the idea! (Credit: Penguin Random House)

That’s the neat part about ‘The Dent in the Universe’. Here time travel is limited to only information being send through time, not material objects. Another constraint on time travel in ‘The Dent in the Universe’ is that time travel is only possible through sChips and therefore the farthest back it is possible to go is ten years, when the first sChip was made.

In ‘A Dent in the Universe’ sending messages back in time is only possible through a special integrated circuit, the ‘S Chip’ and hence you can only go as far back in time as to when the first S Chip was made. (Credit: In Compliance Magazine)

Of course it was a part of Stephan Hawkins’ work over decades that showed that information is still energy so it is a material object. Think about it, in a computer information is stored by flipping magnetic fields, something that requires energy to do. So sending information back in time is still sending a material object, the energy to flip a magnetic field, back in time. Nevertheless the unique take on time travel, and the consequences thereof, is the best part of ‘The Dent in the Universe’.

Stephen Hawking spend much of his career wondering if information is destroyed by entering a black hole. His research did show how information is a kind of energy however. (Credit: Nature)

The worst part is the villain, a serial killer of the Bind Torture Kill or Jeffery Dalmer type. I don’t consider myself to have a weak stomach but there were several sections of ‘The Dent in the Universe’ that were simply unpleasant to read, and that’s being kind. There were a lot of gory details that simply weren’t necessary for the plot as far as I was concerned. By the way the idea of a serial killer getting his hands on a time machine isn’t new. Back in the 1979 there was a movie called ‘Time after Time’ where Jack the Ripper, played by David Warner, got his hand’s on H. G. Wells’ time Machine and traveled to 1980s San Francisco. Wells was played by Malcolm McDowell.

In the 1979 movie ‘Time After Time’ H. G. Wells (Malcolm McDowell left) shows Jack the Ripper (David Warner right) his Time Machine. Jack then uses it to escape to 1980s San Francisco. (Credit: Film-Authority.com)

All of that is quite a shame because much of ‘The Dent in the Universe’ is well plotted out, something very necessary in a time travel story and rather exciting. The story could have worked just as well without so much graphic gore.

I’m not a big fan of Slasher movies, which was a big problem I had with ‘A dent in the Universe’, the villain was just too gory for my taste. (Credit: Medium)

I do have one other complaint as well. Like many SF stories that take place in the near future ‘The Dent in the Universe’ is filled with techno-talk. The computer gamers all say things like “Rashad’s device processed a D-pad signal at the I/O bus”. Meanwhile the detective’s hunting the serial killer all say things like  “That’s inside the feeding zone. Walking distance to the MPWS station, Good eyes Detective Baker, good eyes.” Sometimes I wonder if authors are just trying to impress their readers with how in tune they are with the language spoken by experts in various fields.

Nowadays every profession has its own specialized jargon. Writing an entire novel using only those forms of speech can be a bit tiring after a while however. (Credit: Tech Talk)

And finally it turns out that ‘The Dent in the Universe’ is just the first installment in another series of novels. I haven’t made up my mind as to whether I’ll read the next installment. As I said  ‘The Dent in the Universe’ had some really interesting parts, as well as some very unpleasant ones.

Paleontology News for November 2023:

Several new stories about the history of life here on Earth have caught my attention. One concerns the discovery of a fossil creature from the Cambrian period when animals with hard parts first evolved and that links together two groups of the huge phylum the Arthropods. The other two are studies of two important groups of animals, one a little known family of dinosaurs while the other concerns the origins of a very important family of insects, the bees. As usual I will discuss the oldest fossil animal first and then go forward in time.

Paleontologists at work, or is this fun it’s hard to tell! (Credit: The Academy of Natural Sciences at Drexel University)

As far as we can tell the Arthropods have been the largest and most diverse grouping of animals going all the way back to the very first animals with hard parts. While the name Arthropod means ‘jointed leg’ the Arthropods are also known for their hard exoskeletons and segmented bodies.

The largest and most diverse of the animal phylums, arthropods are surely the most successful form of life in the history of our planet. (Credit: Britannica)

Earth’s ancient oceans were filled with arthropods like the trilobites, the Eurypterids or water scorpions and horseshoe crabs just as today’s are filled with shrimp, lobsters and crabs. In the early Cambrian period, (520 to 550) million years ago there was a lot more experimentation going on in evolution as illustrated by some of the ‘weird wonders’ that have been discovered at the famous Burgess Shale in British Columbia.

Some of the weird and wonderful creatures that lived 520 million years ago and which we only know about thanks to the Burgess Shale fossil site. (Credit: Smithsonian Magazine)

Another fossil site where strange creatures from the Cambrian period have been discovered is outside the town of Chengjiang in China’s southern Yunnan Province. Recently a new species of shrimp like Arthropod has been discovered there that truly is a ‘weird wonder’ but which shows characteristics of two different groups of Arthropods and therefore serves as something of a missing link between them.

An artist’s impression of Kylinxia zhangi from the Chengjiang fossil site in China. (Credit: Wikipedia)

The animal has been given the name of Kylinxia zhangi and measures about 5 cm in length by 1.2 cm in width. While the body resembles that of a modern shrimp K zhangi possesses two large grasping appendages at it’s front and three large compound eyes on its head, that’s right three eyes!

Beautifully preserved specimen of K zhangi clearly showing the large grabbing ‘arm’ at the front. (Credit: Sci.News)

Using the best preserved specimens of K zhangi researchers at Leicester University in the UK carried out a CT scan of the fossils to better visualize it’s anatomy. One of the surprises they discovered was that the head of K zhangi was composed of a fusion of six segments, the same number as in modern insects. While it is too early to suggest any definite relationship between K zhangi and insects the fact shows how the basic building blocks of Arthropods were being experimented with, leading to the immense diversity we see today.

The heads of all insects are built from of fusion of six body segments. K zhangi’s head is also composed of six body segments. Is there a relationship or just a coincidence? (Credit: Pixels)

Speaking of insects some of the best known and most valuable of the six-legged creatures are the bees. Everyone knows, or should know that bees not only produce honey but also pollinate a wide variety of the plants that we grow to eat. Much of our agricultural industry is dependent on pollination by bees with honey just a special side bonus.

A honeybee covered in pollen. Most flowering plants are dependent on other creatures to fertilize them and bees do more than their share of that work! (Credit: Let’s talk science)

Since bees are so important it’s understandable that paleontologists would like to understand their evolution, where and under what conditions they first appeared. For such a widespread group of small animals trying to gather enough data to see the big picture has been difficult however.

120 million years ago the ancient super continent of Gondwana was composed of what today we call South America, Africa, India, Antarctica and Australia. (Credit: Free University of Berlin)

Now a new study from researchers at Washington State University have combined data, including DNA studies, of modern bees with fossil evidence to generate a geneological map of bee evolution. According to the study bees first evolved from their cousins the wasps around 120 million years ago on the ancient super-continent of Gondwana, which has since broken up into Africa, South America and Antarctica. What appears to have caused the predatory wasps to become peaceful gatherers of pollen and nectar was the evolution of the first flowering plants. In fact the study seems to argue for a kind of co-evolution back and forth between flowering plants and bees.

Fossil of one of the first flowers! Flowering plants appear to have evolved at almost the same time as bees evolving from wasps. No coincidence there! (Credit: Sci.news)

Published in the journal Current Biology the team analyzed the DNA from over 200 species of bees living today while comparing their anatomical characteristics with those of 185 fossil bee specimens. Based on this data the researchers developed a genomic map of bee evolution and distribution from the early Cretaceous period to today. One surprising fact the team discovered was that all seven bee families developed before the end of the Cretaceous, in other words the bees appear to have survived the extinction of the dinosaurs rather well!

A bee from the age of the dinosaurs, 100 MYA. All seven families of bees evolved before the asteroid hit that killed the dinosaurs so bees survived that extinction rather well. (Credit: EarthSky)

The question now is whether or not bees can survive the extinction event going on right now thanks to human destruction of the environment. Many species of bees are in danger of extinction because of global warming, pollution and invasive species like the killer hornet that prey on bees. Hopefully studies like the Washington State University’s will help us to protect these busy little creatures, rather than making them one more victim of our ignorance and greed.

Today our friends the bees face many challenges, most of them caused by us. Murder Hornets from Japan are only one the the threats to these very useful insects. (Credit: CBS News)

Finally today I’d like to stay in the Cretaceous period to discuss a little known group of dinosaurs called the Rhabdodontidae. The Rhabdodontidae consist of nine species, all of which seen to have been confined to the continent of Europe and the period 86 to 66 million years ago. Europe at that time consisted of an Archipelago of large and small islands and the Rhabdodontidae seem to have suffered from the phenomenon of ‘island dwarfism’ because as a group they were rather small dinosaurs at 2-6 meters in length. Plant eaters like the Hadrosaurs the Rhabdodontidae had a similar body shape but the head was quite different because instead of the familiar ‘duck bill’ of the Hadrosaurs the Rhabdodontidae had a pointy beak covered in keratin.

Europe isn’t exactly famous for its dinosaurs so you’d think that European paleontologists would be anxious to study their own unique family the Rhabdodontidae. (Credit: EurekAlert)

Although the first named species of the Rhabdodontidae was discovered more than 150 years ago there is still a lot about them that paleontologists don’t know such as their posture, mode of walking and eating. In fact no complete fossil specimen of a Rhabdodontidae has ever been found so most of our knowledge of them comes from putting the pieces together like in a jigsaw. Ever since the late 19th century Europe’s dinosaurs have taken back seat in recognition to the iconic dinosaurs of North America like the T rex or Triceratops. Perhaps it’s time for European paleontologists to do a little more digging in their own backyard and find that complete Rhabdodontidae.