There can be no question that the rise and subsequent fall of the Roman Empire is one of the most important stories in all of history. For a little village in the middle of the Italian peninsula to gain control of the entire Mediterranean and all the lands around it is a testament to the military technology and organization of the Roman people.
There’s no doubt that the Romans were brutal, conquering other nations one by one then collaborating with some of the conquered upper class while enslaving pretty much everyone else. Rome’s willingness to rule through local leaders, backed up by the iron fist of the legions whenever the lower classes got out of hand led to an empire that lasted more than 600 years.
But the Romans were more than just soldiers and politicians, they also possessed the accumulated artistic and engineering skills of the civilizations that came before them all the way back to Babylon. With those skills they built beautiful cities throughout their empire and decorated them with monuments and statues, frescos and jewelry the like of which the world had never seen. In this post I shall be discussing two recently discovered archaeological sites that remind us not only of how skilled the ancient Roman artists were but of how hard the barbarians who finally defeated Rome sought to emulate and preserve Roman art.
The first story comes from the small Italian town of San Casiano dei Bagni just a short drive of 160km north of Rome and dates to a time around 200 BCE. Researchers had been involved in the excavation of an ancient Roman bath, itself an important find when they began to unearth a series of twenty-three beautiful and exquisitely preserved bronze statues from the mud beneath the bath.
The statues are believed to be of some of the Greco-Roman gods like Apollo and Hygieia, yes the ancient Roman goddess of Hygiene. The archaeologists from the University for Foreigners in Siena who are carrying out the excavations think that the statues represent votive offerings to the gods in the hopes of receiving good fortune in return. The statues were deliberately sunk in the waters near the bath in much the same way, and for the same reason we still throw pennies in a wishing well. In fact along with the statues the archaeologists have uncovered over 6,000 bronze, sliver and gold coins dating to between the second century BCE and the first century CE so the site must have remained a ritual center for centuries. As for the statues themselves they are now undergoing a thorough cleaning in a labouratory at nearby Grosseto before they are to be put on displayed in a new museum dedicated to Roman artifacts in San Casciano.
Such was the power and prestige of Rome that even the barbarians who finally conquered the western half of the empire continued to value Roman art and artifacts, even to the extent of incorporating Roman art into their own whenever they could. An example of this reuse of Roman art long after the fall of Rome was discovered recently at a dig in Northamptonshire.
The site is an undisturbed burial of a high class Anglo-Saxon woman that has been dated to about 1,300 years ago. The grave contained a number of interesting objects including two decorated pots and a copper plate but the most spectacular find was a chain necklace composed of thirty pendants, all very rare and valuable.
The objects on the necklace varied considerably, some were made of gold, others of semi-precious stones while some were made from Roman coins, some 300 years after the Romans abandoned Britain. The use of Roman coins as pieces in an Anglo-Saxon necklace speaks to how powerful an influence Rome was, even centuries after its fall.
The most beautiful pendant, and almost certainly the centerpiece of the necklace is a large square piece made of red garnets set in gold that has a basic cross shape. The inclusion of a very valuable necklace with a cross motif centerpiece in the grave has led researchers to speculate that the deceased was a high born lady, and perhaps an early Anglo-Saxon convert to Christianity. Unfortunately the only organic remains were a few fragments of tooth enamel so any details of the person buried have probably been lost forever. As with the Roman statues the finds from Northhamptonshire are currently undergoing cleaning and conservation efforts at the Museum of London Archaeology (Mola) and will go on display sometime in the future.
Studying the art of an ancient people is one of the most powerful tools archaeologists have in trying to understand those people. The art of ancient Rome left its mark on many of the cultures that came after it.
There are two kinds of paleontologists in the world, field explorers who discover sites where new and exciting fossils are found, and labouratory analysts who use the fossils that are unearthed to understand the big picture of life in the past. Today’s post is about two sites where new discoveries are being made along with a new study, based on evidence from fossil sites around the world, that tackles the question of why some creatures, such as our mammalian ancestors, survived the asteroid strike 66 million years ago killed all the dinosaurs. As usual I’ll begin with the oldest story in geological time and go forward from there.
Paleontologists have categorized the history of life here on Earth into a large number of ‘periods’ some of which are better known that the others. The Cambrian period is known for being the first period with large numbers of species who possessed ‘hard parts ‘ that can fossilize. The Devonian period is known as the ‘age of fishes’ where vertebrate animals with bony skeletons began to dominate the oceans, and by the end of the period the land. The Jurassic and Cretaceous periods are both known for the many familiar dinosaur species that lived during them.
The Ordovician period isn’t that well known. Coming right after the Cambrian the animals that lived about 470 million years ago (mya) aren’t really that much different from their Cambrian ancestors. I have quite a few Ordovician specimens in my collection and they are mostly bivalved brachiopods along with a few trilobites and some other invertebrates like corals.
Now a newly discovered fossil site in Morocco may help to increase interest in the Ordovician period by highlighting the diversity of large arthropods that existed 470 mya. The site is a part of the Fezouata shale that outcrops from the Atlas Mountains and which has recently been designated as one of the 100 most important geological sites in the world.
The Fezouata shale as a whole is well known for the exquisite condition of its specimens, with the soft parts of the animals often as well preserved as their hard shells. However most of the specimens in the Fezouata consist of creatures that lived and crawled on the shallow sea floor. Until recently very few specimens of free swimming or nektonic animals had been found. The new site, which is being excavated by paleontologists from the University of Lausanne and the University of Lyon, does precisely that, providing specimens of dozens of new species of arthropod that swam freely, some of which are as much as 2m in size.
It is thought that the new site may be different from the already known Fezouata sites because the carcasses of larger animals where transported to deeper water by underwater landslides. Regardless the new site opens yet another window into a relatively unknown time in the history of life on Earth.
Another such window is the Berlin Ichthyosaur State Park in the state of Nevada. Unlike the Fezouata site in Morocco, which contains specimens of dozens of different species, the Berlin site is very much dominated by specimens of the bus sized ichthyosaur species Shonisaurus popularis.
Living during the age of dinosaurs, ichthyosaurs were aquatic reptiles that seem to have filled the same ecological niche as dolphins, porpoises and whales do in the oceans today. In a recent issue of Current Biology a team of researchers from the University of Utah, the Smithsonian Institute, Vanderbilt University, The University of Nevada at Reno, the University of Texas at Austin, along with Vrije Universiteit in Brussels and Oxford University in the UK, have published a new paper that suggests that Shonisaurus popularis may have resembled whales in more ways than just size and shape.
In our modern seas several species of whales are known to migrate thousands of miles in order to give birth in relatively predator free, protected areas of the oceans. The researchers think that the Berlin site may have served the same function for the ichthyosaurs who ruled the seas back when dinosaurs ruled the land.
As I said above the fossils at the Berlin Ichthyosaur park are almost exclusively Shonisaurus popularis, there’s little sign of anything that the ichthyosaurs could feed upon, or feed upon them. The fossils also consist primarily of fully grown adults and newborns, no juveniles.
For a long time it was thought that the Berlin site may represent an ancient beaching, where a group of Shonisaurus popularis got confused and swam up onto a beach that they could not escape from, much as dolphins and porpoises do today. However a chemical study of the rock around the fossils shows no sign of any toxin that could have led to such a beaching. And a 3D analysis of the positions of the fossils indicates that the animals did not all die at the same time but rather over hundreds, if not thousands of years. In other words, occasional deaths happening at a place where large numbers of the animals gathered on a yearly basis.
So did ichthyosaurs, the whales of the age of dinosaurs also migrate across the oceans of their day to aquatic nurseries where they could give birth in relative safety? The Berlin site certainly suggests that they did and if so that would show that, when living creatures face the same problem they often evolve the same solution, even when separated by millions of years.
Finally another large scale study by paleontologists at the University of Oulu in Finland, the Universities of Leon and Vigo in Spain along with the University of Edinburgh in Scotland have tackled the question of why it was that the dinosaurs went extinct while some species of mammals, birds along with crocodiles and turtles managed to survive. The team of paleontologists carried out their investigation using the data obtained from hundred of different papers on environmental conditions at the end of the cretaceous period published over the last decades.
According to the study the answer may be, paradoxically that the dinosaurs were too dominate, too well fitted to the environment as it existed just before the asteroid struck. By adapting so completely to their world the dinosaurs had pushed the other creatures to the margins where they had to do whatever they could to survive.
That may have served the dinosaurs well before the asteroid struck, but in the environmental upheaval that followed they couldn’t adapt in time, while the small little rat like mammals managed to get by on whatever they could find. In other words the dinosaurs were so good at what they did that they couldn’t learn to do anything else while the mammals and birds had already learned to do many things making them better able to adapt to the new conditions.
A lesson perhaps for today with our, human induced, rapidly changing environment?
Even a casual reader of this blog will know that I’m one of those people who likes to look up at the night sky. Seriously, given the choice between watching some banal sitcom or gazing at the Moon, the stars and the planets you’ll find me outside every night surveying the heavens. In fact right now Venus, Jupiter and Mars are all easily visible in the early evening.
At the same time I also enjoy finding Low Earth Orbiting (LOE) satellites as they pass overhead here in Philadelphia in the early evening or just before dawn. The easiest to spot is the International Space Station (ISS) which I’ve seen now hundreds of times but I’ve also seen China’s Space Station (CSS) a couple of dozen times, the space shuttle back when it was flying, Space X’s Dragon capsule along with the Air Force’s secret shuttle the X37B, some communications satellites and Earth observation satellites. Those last are really cool because unlike the others they are in polar orbits. I even remember one time as a kid when I was on a Boy Scout camping trip and the Echo 2 satellite passed overhead as we were sitting around the campfire.
If you’d like to try to observe some of these satellites as they fly overhead here are a couple of web sites that will get you started: https://spotthestation.nasa.gov/
Now for each of those satellites that are big enough and bright enough for me to see with my naked eye, and despite the light pollution of living in a big city, there are probably a hundred smaller satellites that are also orbiting the Earth along with a lot of space junk. In fact NASA keeps track of 8,000 objects that are orbiting the Earth.
To me those satellites are just more interesting objects to look at in the sky but to professional astronomers they are a real nuisance, and becoming more and more of a problem with time. Just imagine, you’ve been given a precious few hours of observing time on a big telescope that cost millions of dollars, you go though all the steps of pointing the ‘scope at the object you wish to study, spend hours gathering the light of the object, only to have your observation ruined by a streak of light from some passing satellite.
And that problem is growing as more and more satellites are being launched. In fact Space X has over the past (two) years has begun placing and entire fleet of its Starlink satellites into orbit to provide Internet service anywhere in the world. Each time a Falcon 9 rocket is launched for Starlink another 50 satellites are placed in orbit, 50 more objects that could impact astronomical observations.
Meanwhile Blue Origin plans on establishing its own fleet of 3,200 Internet satellites while AST Spacemobile intends to launch 100 or more Bluebird satellites. The first of the Bluebird satellites, a prototype designated as Bluewalker3 already has astronomers worried about what is to come. You see, once in orbit Bluewalker3 unfolded into a 64 meter square communications array that is almost as bright as the ISS. A hundred such satellites could be devastating to science.
Worse yet the problem doesn’t only affect visual light telescopes, the radio signals emitted by all of those satellites also interfere with the observations being made by Radio Telescopes. As companies like Space X continue to make putting a satellite into orbit cheaper and engineers find more and more uses for satellites in LOE the problem of interference can only grow worse.
In the long term the only real solution is the one that Science Fiction writers like Arthur C. Clarke suggested all the way back in the 1950s, astronomical instruments themselves need to go into space. In fact with space telescopes like Hubble, the Chandra X-ray telescope and now James Webb the most important discoveries are already being made by space telescopes. Getting telescopes out of the fog caused by Earth’s atmosphere has been a dream of astronomers for over a hundred years.
Starting a few decades from now we will probably see the first actual observatories being constructed on the Moon not far from the first manned bases. Observatories on the Moon, particularity the far side, will not only escape the interference from LOE satellites but also city light pollution and, for radio telescopes electromagnetic interference from TV and radio stations as well. And having telescopes on the Moon, where they can be serviced and repaired from nearby Lunar bases, would be a big advantage over having them orbiting in space, remember the problems Hubble had at first and the dramatic shuttle mission to fix it.
So observatories on the Moon is almost certainly the long term solution but the transition period will be a long and hard one as numerous important observations are ruined by the streaks of light caused by Earth orbiting satellites, space pollution if you like.
We humans like to flatter ourselves that we rule the Earth. After all there are eight billion of us spread across the globe and our cities, highways and other structures dominate the surface of the planet. Deep down inside however we know that’s not true, we know that scurrying beneath our feet, or hiding just out of sight, or even buzzing in the air around us are untold trillions of little creatures, insects. They were here hundreds of millions of years before us and they’ll be here hundreds of millions of years after we’re gone.
O’k so insects outnumber us, just take a walk outside and look around and you can see that, insects are pretty much everywhere you look. But just how many insects there are would be enormously difficult thing to calculate. Just think of all of the different kinds of insects there are, all the different environments in which they live, the different ways in which they live.
That amount of work would take more than the life span of any single naturalist or small group of naturalists. Recently however a team of entomologists, that’s the formal name for scientists who study insects, from the University of Hong Kong did just that for at least one very important family of insects, the ants and the answer is simply mind blowing.
Now to be honest the entomologists did not actually do any field research themselves. Instead what they did was to compile the results of 489 papers written about ants by scientists from all over the world and over the last hundred years dealing with hundreds of different species of ants. The entomologists who carried out those 489 studies may have had to get down on the ground and estimate the number of ants in each square meter of ground from hundreds of locals spread around the world but the researchers in Hong Kong simply used that data to get an estimate for the total number of ants living here on Earth. 20 Quadrillion, that’s 20,000 trillion.
To put it another way, that’s about 2.5 million ants for every person alive today, and although ants may be small, that means that when put together they would outweigh all of us. So try to remember that the next time you’re walking down the sidewalk and you see an ant’s nest sticking out of a crack in the cement with a lot of ants around the entrance. If you’re tempted to step on the ants just because you’re big and strong and they’re not, don’t forget they have a lot of friends and in the long run they’re going to outlast you and all of us.
As we all know ants are social insects, with many thousands living together in a nest that’s ruled by a single queen who produces all of the eggs from which the many worker ants develop. And in some species the nests have been discovered to carry out some rather amazing, and intelligent construction projects.
Leaf cutter ants for example are known to grow, tend and harvest a form of fungi in their nest underground that they use for their main source of food. Several species that don’t like the sunshine use leafs and other ground litter to build covered highways to their sources of food. And the fire ants of the American southeast can avoid being killed during heavy, flooding rains by literally building rafts out of their own bodies.
Fire ants may be a considerable pest in the states along the Gulf Coast of the United States but they are also one of the most highly organized of all the social insects. So synchronized are their movements that in large numbers they seem to flow more like a liquid than as a collection of individual creatures. So coordinated are the ants that their behavior has even been given the name ‘active matter’.
Now in a series of two articles, one in the journal Bioinspiration and Biomimetics while the second has been accepted at the Physical Review – Fluids (There’s a combination for you) Dr. Hungtang Ko, who recently moved to Princeton University after several years as a graduate student at Georgia Tech, has described some of the details of how fire ants not only build their rafts, but actually control them.
Right from the start the ant’s actions show a considerable degree of intelligence, at the first sign of rising water levels they begin to gather up the nest’s eggs in order to preserve the next generation. Once the nest is flooded the individual ants don’t swim toward each other but rather just allow the ‘cheerios effect’ to bring them together. The cheerios effect is the name given to the way that surface tension causes small objects floating in water to clump together, like the last few cheerios in a bowl of milk. The skin of each individual ant is water repellant to a small degree but this property increases as more ants join the raft, grabbing a hold of each other with their mandibles and claws. Every ant seems to know what it is supposed to do so the raft can be assembled in about 100 seconds, even storing the precious eggs onboard.
If the floodwaters are quiet, with little or no movement or turbulence, the ants maintain their raft in a flat circular shape but if the water is flowing the ants can actually streamline the shape of their raft to make it more stable. The ants can do this because the raft is actually constructed in two layers with the bottom layer providing stability so that the ants in the upper layer can change their positions to alter the raft’s shape.
The brainpower of each individual ant may be tiny, but studies like Dr. Ko’s provide strong evidence that collectively they are one of the most intelligent animals on this planet.
Here in America our founding fathers were both admirers and students of the Iron Age Greek civilization that was considered by some in the 18th century to be the founding fathers of the European civilization of their day. Many of the ideals of classical Greece, like personal liberty, democracy and a liberal as opposed to religious education became part of American culture because our founding fathers respected the ancient Greeks so much.
So then who did the Iron Age Greeks regard as their founding fathers? Who did Socrates, Pericles, Herodotus and Euripides admire and look back to for inspiration? Well, that would be the still more ancient Bronze Age cultures that archaeologists have named Mycenaean on the Greek mainland and the earlier Minoan on the Island of Crete. These two peoples built the first civilizations in Europe and therefore are therefore the founding fathers of so much of human history.
For thousands of years most of what we knew about these Bronze Age peoples came from the myths and stories told by the Iron Age Greeks like Homer and later authors. Starting from the late 19th century however archaeologists have learned a great deal about the Minoans and Mycenaeans, sometimes confirming, sometimes contradicting the ancient tales.
Let’s get one thing straight from the start. The Mycenaeans and Minoans did not call themselves by those names. Those terms are strictly archaeological labels for a large number of excavated sites that have been dated to the time of Bronze Age in Greece and Crete. Even Homer didn’t call the heroes of his epics Mycenaeans or Minoans, he called them Achaeans to differentiate them from his own people the Dorians. Recent analysis of the diplomatic archives of the Hittites and Egyptians have indicated that the Mycenaean people may have called themselves something like the Ahhiywans, similar to Homer’s Achaeans, but we have no idea what the ancient Minoans may have called themselves.
Whatever they called themselves Homer considered the Mycenaeans to be a completely different people and culture from his own Doric people. And judging by the myths the Mycenaeans considered themselves to be different from the Minoans.
The name Mycenaean comes from the ruins of Mycenae, the largest and wealthiest of the Bronze Age palatial centers that have been excavated in mainland Greece. According to myth Mycenae was the palace of Agamemnon, the leader of the Greeks during the Trojan War. The Minoans, on the other hand were named for King Minos the most powerful king of Crete in the ancient myths.
Both the Minoans and Mycenaeans possessed a form of written language that have been given the names Linear A, for the Minoans, and Linear B for the Mycenaeans. A major advance in understanding these Bronze Age cultures came in the 1950s when Micheal Vintris succeeded in deciphering the Linear B of the Mycenaeans and it was discovered that their language was Greek, not too different from the Greek of Homer. Linear A however has resisted all attempts at translation and we have only guesses as to what kind of language the ancient people of Crete spoke.
Now archaeologists and historians have a new tool with which to try to understand who the Minoans and Mycenaeans were, where they came from and what relations they have to the people of modern Greece, DNA analysis. A study has just been published in the Journal Nature that details the genetic makeup of nineteen individuals whose remains were unearthed from Bronze Age sites across mainland Greece and Crete. The study also compared that ancient DNA to that of 334 living people from around the world including 30 individuals from modern Greece.
What the researchers found was continuity; some 60-80 percent of the Bronze Age DNA was shared with the modern Greeks. What’s more, when the ancient DNA was compared to DNA samples from sites dated to the Neolithic period, some 7000 BCE, they again found a great deal of overlap. So it seems that Homer was incorrect when he asserted that the Achaeans were a completely different people than his own Dorians.
So genetically the people of Greece today pretty much come from people who lived in that part of the world nearly 10,000 years ago! Oh, the study did show some foreign influence; about 10% of the Minoan and Mycenaean DNA appears to have come from the region around modern Iran. Also the Myceaeans, but not the Minoans had genetic similarities to people from the steppes of Eastern Europe and central Asia, the land of the people who the classical Greeks would call the Scythians.
Still, for the most part, the Greeks have been Greek for longer than recorded history, a testament to the Greek spirit and the impact it has had on the Human spirit around the globe.
Every year representatives from nearly 200 countries come together at a chosen location to discuss efforts toward fighting global warming and the harmful changes in our planet’s climate caused by it. The first such conference was held in 1995 and given the title COP 1.
Each succeeding forum has added one to the number with COP 20 back in 2015 generating the famous ‘Paris Accord’ where a target figure of a rise in global temperature of no more than 1.5º C above pre-industrial levels was pledged by every nation in attendance. However no concrete plan to eliminate greenhouse gasses such as CO2 and Methane was agreed upon in Paris and every conference since then has basically failed to stop the ever increasing rise in fossil fuel emissions.
Last year’s COP 26 in Scotland could not even reach an agreement on how or when to eliminate the use of coal, the worst emitter of CO2. Plans to issue a strong final statement on ‘Phasing Out’ coal were scuttled by India, the world’s forth largest emitter of CO2 but a nation still considered to be ‘developing’ and which in fact has plans to greatly increase its fossil fuel emissions. The wording that was finally agreed to was to ‘Phase Down’ coal use instead of ‘Phase Out’.
With so much contention making it impossible to develop any realistic plan to fight global warming it not surprising that the negotiators at COP 27, held in the Egyptian resort city of Sharm el-Sheikh on the Red Sea, spent more of their time tackling a different part of the climate problem. The negotiators concentrated their efforts on the question of how to help those of the poorer countries of the world who are already suffering from climate change. Over the last year the flooding in Pakistan and Niger coupled with severe droughts in east and south Africa have brought attention to the fact that many of the countries that produce the smallest amounts of greenhouse gasses are enduring some of the worst consequences of global warming.
For the past thirty years these poorer countries have been pushing the richer countries, who just happen to be the biggest polluters, to establish a reparations fund that will help pay the costs of disaster relief. And for the past thirty years the richer countries have resisted signing a blank cheque that could keep them paying into this fund for decades. Another complication was the status of China, which back in 1995 was still a small economy producing only a small amount of greenhouse gasses but which since then has become the world’s second biggest economy and the biggest emitter of both CO2 and methane. So should China contribute to this fund or should it, and this would be a real farce, actually benefit from such a fund?
Right at the start of COP27 the European Union signaled that they were now ready to support the reparations proposal but the United States was still reluctant. When the US’s chief negotiator, former US Senator John Kerry tested positive for Covid-19 it appeared that the entire conference might end without any real progress.
Only a willingness to extend the negotiations through the weekend allowed the conference to come to an agreement. The world now has an established fund, endowed by most of the world’s richer nations, to help poorer countries pay for the damage done to them by climate change. Before you start thinking that a tremendous achievement was made however bear in mind that the richer nations have yet to announce how they will contribute and for how long and the status of China has yet to be decided.
The worst part however is that by appearing to make progress on who will pay for the damage caused by climate change absolutely nothing was achieved toward reducing, let alone eliminating the use of fossil fuels for energy production. So the release of greenhouse gasses is going to continue, in fact increase, increasing both the severity and length of the whole problem.
The final report from COP27 did restate the goal of preventing global temperature rise from exceeding 1.5ºC over pre-industrial levels but it also restates that coal use is to be ‘phased down’ not ‘phased out’. The world still has no agreement on or plan for how to stop making the problem of climate change worse.
And while the politicians dither more greenhouse gasses are being dumped into the atmosphere every day causing the world’s temperature to continue to rise bringing with it ever more severe climate crisis.
Back when I was in college the standard model of Cosmology consisted of a Big Bang that happened between 10-15 billion years ago. That detonation led to an expansion of the matter in the Universe that could be seen in the red shift of light coming from distant galaxies, the rate of that expansion was given the name ‘Hubble’s Constant’.
Even as the Universe as a whole expanded locally matter clumped together due to gravity to form the galaxies and stars we see today. The model also predicted that the force of gravity between the galaxies would slow down the rate of expansion so that today Hubble’s ‘Constant’ would be smaller than it was billions of years ago.
The big Question, back when I was in college, was whether or not the force of gravity was strong enough, was there enough matter in the universe to eventually bring the expansion of the Universe to a stop billions or even trillions of years from now. If that happened the Universe would begin to contract until there was a ‘Big Crunch’. Or if there wasn’t enough matter in the Universe then it would just expand forever with all of the stars dying out as they ran out of fuel. A cold, empty Universe that was paradoxically called ‘Heat Death’ because the entire Universe would be at thermal equilibrium so that no work could be done.
Oh, and then there was something wrong with the way the galaxies behaved, their dynamics. They acted as if they contained more matter than we could see, so astronomers called the problem ‘Dark Matter’. The astrophysicists had a few ideas what Dark Matter could be but really had no evidence to back up their hypothesizes.
Things began to change in the late 1990s as two groups of astronomers led by Adam Riess and Saul Perlmutter tried to answer the question of whether the expansion of the Universe was slowing fast enough to come to a stop. What they found was that the expansion wasn’t slowing at all, it was accelerating.
Riess and Perlmutter used observations of Type 1 supernovas to make their measurements, see my post of 18 January 2020. Type 1 supernova occur when a white dwarf star steals matter from a nearby companion star. Eventually the white dwarf steals too much matter and explodes as a Type 1. Since all Type 1 supernova happen at the same mass our theories predict that the supernova explosions should all have the same total amount of energy and can be used to measure the distances to other galaxies. That is, if all Type 1’s are the same absolute brightness then if one Type 1 supernova looks brighter it must be closer, if another looks dimmer it must be further away. Whatever it was that was that was pushing the galaxies apart was given the name ‘Dark Energy’ in correspondence with Dark Matter although it is really more of a pressure than an energy.
Another, more technical problem also came out of the work of Riess and Perlmutter, the value for Hubble’s Constant that they measured over the last few billion years differed slightly from the value obtained by the astrophysicists who studied the Cosmic Microwave Background (CMB), the leftover radiation from the era of the Big Bang itself.
Now a group of astronomers led by two former students of Riess, Dillion Brout of Harvard’s Center for Astrophysics along with Dan Scolnic of the Department of Physics at Duke University have published a greatly expanded data set of over 1500 Type 1 supernova observations, ten times as many as Riess and Perlmutter gathered. This study has been given the name Pantheon+ and has produced a value for Hubble’s constant over the last 10 billion years of 73.4 kilometers per second per megaparsec with an uncertainly of only 1.3%. This value is significantly larger than the value obtained from the CMB for the early Universe 13 billion years ago.
These measurements give us the most precise account yet of the effect that Dark Energy has had on the evolution of the Universe. It also solidifies the discrepancy between the measurements of Hubble’s constant using Type 1 supernova and those made using the CMB to a better than one in one million chance of being caused by statistical error.
So what is going on here? What is causing our models and measurements to differ? Well the simplest answer would be that ‘Dark Energy’ has not been a constant effect throughout the history of the Universe, it’s dynamic, it changes and the results of Pantheon+ can give us some clues as to how it changes with time.
The other possibility is that we’re seeing the first evidence of some completely unknown factor effecting Dark Energy. As you can imagine cosmologists are hoping to avoid that possibility. After all, currently they have no idea what Dark Energy is or if it changes. To assume there’s a yet completely unknown factor effecting Dark Energy would just square the problems we have now.
And then there’s the Dark Matter that astrophysicists first proposed before Dark Energy but which they still have no clear idea of what it is. Dark Matter was supposed to account for why galaxies, like our own Milky Way, are observed to spin faster than they should based on the matter we can see and Newton’s laws of gravity.
Dark Matter therefore was predicted to be some sort of heavy sub-atomic particle that did not react with the electromagnetic field, that is light, and that therefore we could not see. Physicists have been searching for that exotic particle, called a Weakly Interacting Massive Particle or WIMP, since the 1980s and have so far completely failed.
In fact a growing minority of physicists are ready to give up on the whole idea of Dark matter and instead propose that there is something wrong with Newton’s laws of gravity. There are currently many ideas floating around as to how Newton might be wrong and these theories have been given the generic name of MOdified Newtonian Dynamics or MOND.
Now a new study of Open Star Clusters in our Milky Way has provided evidence backing some of those MOND theories. The paper comes from researchers at the Helmholtz Institute of Radiation and Nuclear Physics at the University of Bonn in Switzerland.
Open star clusters are the maternity wards of galaxies where gas clouds contract under gravity to give birth to stars. The best-known example of these open clusters are the Pleiades but many are known throughout the Milky Way and neighboring galaxies. After the stellar nursery has given birth to all the stars it can the grouping stays together for a few tens of millions of years as it orbits around the center of the galaxy. Eventually however tidal forces from the billions of other stars in the galaxy cause the stars in an open cluster to drift away, spreading across the galaxy. In fact our own Sun must have once been a member of such a cluster only to have drifted away billions of years ago.
And just as here on earth we have two tides, one rising as the Moon is high in the sky and the other 12 hours later, the tides of the galaxy will pull the stars in an open cluster in a forward direction, relative to its motion around the galactic center, and in a backward direction.
Now Newton’s laws predict that the two tides will be of equal strength, with an equal number of stars leaving in each direction. Certain versions of MOND however predict that the forward tide should be just about twice as strong as the backward so that twice as many stars should drift away in that direction.
Needless to say trying to determine just which stars that are near an open cluster were actually once members of that cluster is no easy chore but the team from the University of Bonn succeeded with five open clusters and their results, published in the Monthly Notices of the Royal Astronomical Society strongly indicate that some variety of MOND is at work here.
So astronomy and astrophysics today have a couple of really big problems to be solved. Wouldn’t it be interesting if the solution to one problem is also the solution to the other? I mean, what if MOND is that extra factor effecting Dark Energy? We’ll just have to wait and see.
In was during the 1970s that the science of geology was revolutionized by the theory of Plate Tectonics, the idea that the surface of the Earth was cut up into a number of plates that moved relative to each other. As those plates slide past, or butt up against each other mountains rise, volcanoes erupt and earthquakes are generated. There are even places where one plate slides over another causing a ‘subduction zone’ where the deepest parts of the oceans occur. The theory of plate tectonics explains so much of what we see in the rocks around us that it is central to the entire study of geology.
Central perhaps but like most theories plate tectonics is incomplete, there are still some details to be worked out and geologists around the world have been kept busy trying to understand exactly how plate tectonics works. This week’s post is about two such studies.
The first study deals with those subduction zones and how they are generated. The study comes from the Instituto Dom Luiz at the University of Lisbon Portugal along with the supercomputer at the Johannes Gutenberg University in Germany. And, like many scientific studies nowadays, this one uses a computer model to analyze more data than any human being could ever manage to do. In fact the study would not have been possible even with the supercomputer had it not been for the recent development of a much more efficient computational code by the programmers at Johannes Gutenberg.
Combining the geological expertise of the University of Lisbon with the computing power of Johannes Gutenberg the program was applied to the problem of the development and evolution of subduction zones. For the first time all of the various forces at play at the interface of two plates were taken into account in order to calculate a 3D model of a of how one plate pushes another beneath it down into the Earth’s mantel.
Beginning with the many trenches that make up part of the Pacific’s ‘Ring of Fire’ the researchers found that subduction zones follow a rhythmic ebb and flow, with existing trenches slowing in their growth and then being followed by new ones near the same locations. Having used their new model to study the trenches in the Pacific the geologists now hope to apply it to other areas of the Earth like the Caribbean, the Antarctic and even the Atlantic Ocean off of Lisbon. In fact there is evidence that a new subduction zone has started in the waters just off of Portugal, one that may be the beginning of a new ‘Ring of Fire’ that could someday encircle the entire Atlantic Ocean!
Even as one group of geologists learns more about one facet of tectonic activity another, led by scientists at Trinity College in Dublin, Ireland is investigating how plate tectonics contributed to one of the most destructive volcanic events in the history of Earth. Known as the Toarcian period the event happened about 183 million years ago during the Jurassic period. At that time massive volcanic eruptions poured enormous amounts of carbon dioxide into the atmosphere and we all know what that means, global warming and environmental destruction leading to a mass extinction event.
Performing a chemical analysis of samples of mudstone obtained from a 1.5 km deep borehole in Whales researchers were surprised to find that the massive upwelling of magma that triggered the Toarcian event occurred at a time when the movement of the tectonic plates had slowed almost to a stop. That evidence seemed to run counter to common sense, wouldn’t magma pushing up from the Earth’s interior lead to increased tectonic activity?
But perhaps this is one of those occasions where common sense is simply wrong. Perhaps significant tectonic activity acts as a pressure relief valve releasing energy from beneath so that the magma remains deep below the surface. If that were the case then it would be when the movement of the tectonic plates slows that the magma underneath can build up the pressure to upwell and cause destructive geological events like the Toarcian.
The study itself will have to be considered by other geologists but one thing is certain, our planet is a complex, very dynamic place and we still have a great deal to learn from it.
On November 16th, after more than six years of problems, delays and cost overruns, to say nothing of two last minute hurricanes, NASA’s massive Space Launch System (SLS) with it’s Orion man capable capsule was finally launched from Cape Kennedy’s pad 39B. The Artemis 1 mission as the combination is officially designated is an unmanned test of the equipment that will in just a few years take human beings back to the Moon after a more than 50 year absence. In many ways Artemis 1, and its manned successor Artemis 2, are a reboot of the Apollo 8 mission that first took humans to orbit the Moon.
All of this was supposed to happen back in 2016, the huge SLS rocket that serves as the lunch vehicle was going to be easy to design and build. After all the main engines were the same RS25 engines that powered the space shuttle and the solid fuel boosters on each side of the rocket’s core stage were just longer versions of the shuttle’s solid fuel boosters. The problems just kept multiplying however and the delays, and cost overruns caused the program to take twice as long and cost nearly three times what was originally allocated.
Even once the SLS got to Cape Kennedy the problems continued to pile up with hydrogen fuel leaks alternating with the threat of hurricane winds to cause a series of small delays. Even on the day of launch itself a small hydrogen leak was detected after the SLS had been fueled that required a team of engineers to go out to the pad and tighten some valves on the rocket before liftoff.
Still when the countdown went to zero and the engines ignited the SLS, the most powerful rocket ever built, that’s in terms of initial thrust, performed flawlessly, lifting the Orion capsule, its European Service Module (ESM) along with an Interim Cryogenic Propulsion Stage into Earth orbit. So powerful was the takeoff that the mobile launch pad, which had carried Artemis back and forth to the Vehicle Assembly Building several times, was damaged.
Once Orion was in orbit the SLS had completed its task, ten years of costly development for a mere eight minutes of performance. Now the engineers will have to go over the data thoroughly but the big rocket certainly proved that it could do the job it was designed for. Approximately forty minutes after achieving orbit the Interim Cryogenic Propulsion Sage fired its engine for an eight minute burn that sent the Orion capsule and the ESM on an Earth escape trajectory to the Moon.
The rest of the mission is up to the Orion capsule and it’s service module, which was designed and built by the European Space Agency (ESA) as their contribution to the Artemis program. According to the mission plan the spacecraft was to pass behind the Moon and there perform a four minute burn of the ESM’s engine to place Orion in a lopsided retrograde orbit around the Moon that would bring the spacecraft closer than 100 kilometers to the Lunar surface and take it further than 60,000 kilometers. This burn was successfully carried out on the 21st of November.
O’k, so what’s a retrograde orbit and why it that important for Artemis? Well if you take your right hand, point your thump up while wrapping your fingers around, see image, and imagine that your thumb is the Sun’s north pole then virtually everything in our Solar System orbits, rotates, spins around the Sun in the direction your fingers point, their angular momentum is counter-clockwise.
Only a few objects, like the spin of Venus on its axis and several of Jupiter’s smallest, and farthest moons rotate in the opposite direction, clockwise and are said to have a retrograde motion. Now the engineers at NASA wanted Orion to be put into this unusual orbit in order to push it a bit, to see if the spacecraft and the ground systems tracking it, could handle the extra strain. This mission is intended to test the equipment after all.
So the plan was for Orion, with its ESM to orbit the Moon until the 1st of December when a final burn of the ESM’s engine set the spacecraft on a return path back to Earth. Reentry and splashdown are scheduled for December eleventh off the California coast in the Pacific Ocean.
If the mission ends as successfully as its gone so far then the Artemis 2 mission is scheduled for sometime in 2024. That mission will be manned and for the first time in fifty humans will return to Lunar Orbit although not actually land on the Lunar surface. That event is going to have to wait for Artemis 3 and the development of a landing module.
It’s been along time since humans last walked on the Moon but the Apollo program that put men on the Moon had no plan for a follow up, no intention of staying on the Moon. Artemis may be slower but it is designed as a step-by-step program leading to a permanent base on the Moon. This time we plan on staying.
Paleontology is the science that’s all about origins. Whether it be the origin of life itself or the beginnings of a certain aspect of some living creatures, let’s say warm bloodiness, paleontology seeks to understand when and how the different characteristics that living creatures possess came to be. In this post I’ll be discussing three such important characteristics and as usual I’ll begin in the distant past and work my way forward in time.
I have mentioned the Cambrian period several times in these posts, see posts of 16 June 2018 and 2 December 2020. The Cambrian is unique in the history of life because that is the time when a large diversity of living creatures first appears in the fossil record, a phenomenon known as the Cambrian explosion. In the fossils from the Cambrian however we can already recognize animals that are clearly molluscs, or echinoderms, or worms, or arthropods. In other words the major groups of animals known as phyla are already distinct, which means a lot of evolution has already happened. If we want to study the relationships between those major groups, say that between the segmented worms and arthropods, we need fossils that are either from before the Cambrian or from a creature in the Cambrian that contains features unique to two or more distinct phyla.
A recent fossil from China falls into that latter category. The creature is a one centimeter long worm like animal covered with both armoured plates and hair like bristles that has been given the name Wufengella. This creature packs a lot of anatomy into its tiny frame linking three different phyla, the brachiopods (bivalved animals that are not related to clams), bryozoans (known as moss animals) and phoronids (horseshoe worms).
The fossil has been dated to 518 million years ago, near the end of the Cambrian period and so therefore it is not a ‘missing link’ ancestor to those three phyla but rather a now extinct cousin of the brachiopods, bryozoans and phoronids who possessed features of them all. The paper describing Wufengella was published in the journal Current Biology and was written by a large group of paleontologists from a number of universities in both China and the United Kingdom illustrating once again the value to science of cooperation between nations no matter what the quarrels created by their governments.
One anatomical structure that is of critical importance to many animals is the one with which they eat, their jaw. Different types of animals built their jaws in different ways, arthropods for example built their jaws from modified legs, that’s why close ups of insects eating look so creepy to us. Humans and other vertebrates however developed our jaws from bones that originally held our gills in place, that’s why human fetuses still develop gills about five weeks after fertilization, if we didn’t we wouldn’t have either a jaw or an inner ear.
In a previous post I discussed how the early jaws of vertebrates evolved and diversified in the Devonian period, some 400 million years ago, see my post of 30 April 2022, but how the very first vertebrate jaw evolved is still a subject of debate among paleontologists. The one thing that was agreed upon was that, since there were so many different vertebrates with so many different sizes and shapes of jaws during the Devonian, the first jaw must have developed before that time, perhaps during the preceding Silurian period, around 440 million years ago.
Now a series of four papers in the journal Nature have described a series of early species of jawed fish from the Silurian that are so diverse that they may force paleontologists to look even further back for the first jaw, perhaps as far as the Ordovician period some 480 million years ago. The Silurian fossils were unearthed in a pair of fossil beds outside of Chongqing in southern China and contain both cartilaginous fish, like modern sharks and rays, along with bony fish.
The species discovered represent not only a variety of different types of jaws but different body types, from the wide flat bottom dwelling shape of Xiushanosteus mirabilis and Tujiaspis vividus to the sleek, fast swimming shark like shape of Shenacanthus vermiformis and Fanjingshania renovata. With so much diversity it is obvious that the fish unearthed in China have a lot of evolution behind them, meaning that paleontologists will have to look even further back in time, to the Ordovician period in order to understand how the earliest members of our own phyla came into being.
Moving forward in time another important innovation in vertebrate animals is the wing, which has allowed thousands of different species to fly. Nowadays when we think of wings we think of birds or bats but they weren’t the first vertebrates to fly, that honour belongs to the family of lizard-like contemporaries of the dinosaurs known as the Pterosaurs.
Now a reexamination of fossils discovered a hundred years ago in Scotland may have identified the pre-flying ancestors of the pterosaurs. Known as Scleromochlus taylori the small reptile went unappreciated in part because of the incredibly hard 237 million year old limestone blocks in which it was encased.
The question of how the pterosaurs evolved to fly has been debated as long as how the birds first flew and with pretty much the same arguments. Most paleontologists thought that tree climbing reptiles who began gliding from branch to branch eventually developed leathery wings which they starting flapping for powered flight. The fossils of S taylori however tell the story of a small, fast running ground runner.
The researchers at Edinburgh University discovered the connection between S taylori and pterosaurs only when they performed CT scans of the limestone encased fossils revealing for the first time some of more delicate details of the animal’s anatomy. Details like a head too large for its body and a femur with a hook to it that fits into a slot in the hip so that the animal’s legs go straight downward instead of sidewards like a lizard’s or crocodile’s.
S taylori was a runner, catching insects near the ground and maybe it started using flaps on its forearms to help it catch its prey. Flaps that got larger and larger until the creature took off like…well, like a pterosaur!
By studying the anatomy of ancient life paleontologists not only learn about the lives of creatures of the past but of how different species relate, the family tree of life on Earth.