Space news for November 2022: Finally, finally after years of setbacks and delays the Artemis 1 mission is launched and so far everything is a total success.

On November 16th, after more than six years of problems, delays and cost overruns, to say nothing of two last minute hurricanes, NASA’s massive Space Launch System (SLS) with it’s Orion man capable capsule was finally launched from Cape Kennedy’s pad 39B. The Artemis 1 mission as the combination is officially designated is an unmanned test of the equipment that will in just a few years take human beings back to the Moon after a more than 50 year absence. In many ways Artemis 1, and its manned successor Artemis 2, are a reboot of the Apollo 8 mission that first took humans to orbit the Moon.

On the Apollo 8 mission Borman (l), Lovell (r) and Anders (c) became the first humans to go to, although they did not land upon, another celestial body as they orbited the Moon. (Credit: National Air and space Museum)

All of this was supposed to happen back in 2016, the huge SLS rocket that serves as the lunch vehicle was going to be easy to design and build. After all the main engines were the same RS25 engines that powered the space shuttle and the solid fuel boosters on each side of the rocket’s core stage were just longer versions of the shuttle’s solid fuel boosters. The problems just kept multiplying however and the delays, and cost overruns caused the program to take twice as long and cost nearly three times what was originally allocated.

The Artemis Program is a scaled back version of the Constellation Program the NASA developed backs in the early 2000s. (Credit: SlidePlayer)

Even once the SLS got to Cape Kennedy the problems continued to pile up with hydrogen fuel leaks alternating with the threat of hurricane winds to cause a series of small delays. Even on the day of launch itself a small hydrogen leak was detected after the SLS had been fueled that required a team of engineers to go out to the pad and tighten some valves on the rocket before liftoff.

As if the engineering problems weren’t enough even the weather caused problems for Artemis 1 as two hurricanes delayed the launch. (Credit: Space Channel)

Still when the countdown went to zero and the engines ignited the SLS, the most powerful rocket ever built, that’s in terms of initial thrust, performed flawlessly, lifting the Orion capsule, its European Service Module (ESM) along with an Interim Cryogenic Propulsion Stage into Earth orbit. So powerful was the takeoff that the mobile launch pad, which had carried Artemis back and forth to the Vehicle Assembly Building several times, was damaged.

Some of the damage sustained by the mobile launch pad used by Artemis 1. (Credit: Florida Today)

Once Orion was in orbit the SLS had completed its task, ten years of costly development for a mere eight minutes of performance. Now the engineers will have to go over the data thoroughly but the big rocket certainly proved that it could do the job it was designed for. Approximately forty minutes after achieving orbit the Interim Cryogenic Propulsion Sage fired its engine for an eight minute burn that sent the Orion capsule and the ESM on an Earth escape trajectory to the Moon.

Years behind schedule and billions over budget at least the Space Launch System (SLS) worked perfectly when it finally did launch. (Credit: Geek Wire)

The rest of the mission is up to the Orion capsule and it’s service module, which was designed and built by the European Space Agency (ESA) as their contribution to the Artemis program. According to the mission plan the spacecraft was to pass behind the Moon and there perform a four minute burn of the ESM’s engine to place Orion in a lopsided retrograde orbit around the Moon that would bring the spacecraft closer than 100 kilometers to the Lunar surface and take it further than 60,000 kilometers. This burn was successfully carried out on the 21st of November.

Currently (3 December) the Orion Spacecraft is in a distant retrograde orbit around the Moon. This orbit was chosen in order to more fully test the capabilities of the Orion capsule and its European built Service Module. (Credit: The Coalition for Deep Space Exploration)

O’k, so what’s a retrograde orbit and why it that important for Artemis? Well if you take your right hand, point your thump up while wrapping your fingers around, see image, and imagine that your thumb is the Sun’s north pole then virtually everything in our Solar System orbits, rotates, spins around the Sun in the direction your fingers point, their angular momentum is counter-clockwise.

Spin can occur in two directions, like your right hand, seen above, or left hand. Because most people are right handed that direction has been defined as positive while left handed is negative. It just so happens that our Solar System as a whole is righted handed. (Credit: Rolling Motion)

Only a few objects, like the spin of Venus on its axis and several of Jupiter’s smallest, and farthest moons rotate in the opposite direction, clockwise and are said to have a retrograde motion. Now the engineers at NASA wanted Orion to be put into this unusual orbit in order to push it a bit, to see if the spacecraft and the ground systems tracking it, could handle the extra strain. This mission is intended to test the equipment after all.

At the farthest point in its orbit from Earth the Orion capsule takes a selfie with the Earth and Moon in the background. (Credit: Friends of NASA)

So the plan was for Orion, with its ESM to orbit the Moon until the 1st of December when a final burn of the ESM’s engine set the spacecraft on a return path back to Earth. Reentry and splashdown are scheduled for December eleventh off the California coast in the Pacific Ocean.

The splashdown of Apollo 11. It’s been a long time since a man capable capsule has returned from the Moon but hopefully that’s about to change. (Credit: DesignNews.com)

If the mission ends as successfully as its gone so far then the Artemis 2 mission is scheduled for sometime in 2024. That mission will be manned and for the first time in fifty humans will return to Lunar Orbit although not actually land on the Lunar surface. That event is going to have to wait for Artemis 3 and the development of a landing module.

While changes could still be made it is expected that the Artemis lander will look something like this. How long its development will take is the big question. (Credit: Space.com)

It’s been along time since humans last walked on the Moon but the Apollo program that put men on the Moon had no plan for a follow up, no intention of staying on the Moon. Artemis may be slower but it is designed as a step-by-step program leading to a permanent base on the Moon. This time we plan on staying.  

Book Review: Star Power (American Democracy in the Age of the Celebrity Candidate) by Lauren A. Wright

Fame and power have always gone hand and hand. As far back as Alexander the Great and Julius Caesar men vying for authority often sought celebrity status as a means toward that goal. Think about, doesn’t the very name ‘Alexander the Great’ sound like something a public relations consultant would think up.

Back in the days of Alexander the Great men achieved fame by winning battles. Today many achieve fame by pretending, i.e. acting as superheros or other strong men. (Credit: Greece Is)

In our modern era we have become familiar with entertainers, actors, musicians and athletes, turning their notoriety into political office. Here in America we have now elected two such men, Ronald Reagan and Donald Trump, to the highest office in our country, the Presidency of the United States, often referred to as the most powerful position in the world.

In the last 50 years America has elected two celebrities to be President. Hopefully we’ve learned our lesson and won’t do that again!!! (Credit: Wikipedia)

Why do we do it? Why do we choose inexperienced amateurs as our political leaders instead of seasoned politicians? And why do people who have had success in the entertainment world even think that they are qualified to hold public office?

Oprah Winfrey is another celebrity who has been mentioned as a possible choice for President. Fortunately it seems that she has sense enough to know that she’s not qualified. (Credit: Forbes)

Those are some of the questions that Dr. Lauren Wright, a lecturer in Politics and Public Affairs at Princeton University seeks to answer in her book ‘Star Power, (American Democracy in the Age of the Celebrity Candidate)’. In her book Dr. Wright surveys the latest studies and polls related to the whole issue of celebrities running for public office, examining the advantages that celebrities have over traditional politicians as well as the justifications that celebrities give for entering the political arena.

Doctor Lauren A. Wright, a lecturer at Princeton University and author of “Starpower”. (Credit: Center for the Study of Democratic Politics)

Dr. Wright separates her study into four subsections, each of which is a chapter in ‘Star Power’. The first chapter is a brief review of the interplay between celebrity status and political power through history starting with Alexander and Caesar but concentrating on celebrities in American history. Dr. Wright even takes a bit of time to describe the race for California governor by the author Upton Sinclair in 1934 pointing out numerous resemblances between that campaign and Donald Trump’s race for President.

Front Cover of “Star Power, American Democracy in the age of the Celebrity Candidate” by Lauren A. Wright. (Credit: Amazon)

In chapter two the question of why celebrities run for office is considered. Why does someone who has seen success in film or the concert hall or ball field think that their skill as an entertainer will translate into success as a member of government? Starting with the actual reasons that celebrities give for running Dr. Wright then goes into the psychology of famous people, their need for acclaim along with their conceit that they can do anything because the flatterers around them tell them they can.

Wht is it about humans psychologically that we have such a desire to be adored by thousands of people we’ll never meet and never get to know? (Credit: Billboard)

Chapter three considers the way that the public treats celebrities differently from normal folk, even normal folk like politicians. In fact Dr. Wright lists seven qualities that celebrities possess that the average politician would love to have. These qualities are Name Recognition, Favourability, Relatability, Outsider Status, Large and Passionate Following, Fundraising and Media Attention. I’ll just discuss one of these in passing because I have never understood why people think that an ‘outsider’ without any experience in government, is in any way preferable to a politician who actually knows how to do the job.

As children we all want the attention of those around us. Many people never seem to grow up. (Credit: Icon Agency)

Here in Pennsylvania we recently had a celebrity TV doctor, Memhet Oz who ran for the US Senate against the former mayor of the city of Braddock who is currently our state’s Lieutenant Governor, John Fetterman. As a part his campaign Oz has on many occasions criticized Fetterman as ‘A Career Politician’, in other words someone with training and experience, while he as an outsider is better suited for the post. Why do we even consider such an illogical argument when we would never think of hiring someone like a cab driver to fix our plumbing? (P.S. Fetterman won thankfully!)

John Fetterman (l) has been a popular Mayor of a small Pennsylvania town and hard working Lieutenant Governor. Mehmet Oz (r) has been a cardiologist and talk show host. The question is, why do some people think that political / governmental experience should actually count against a candidate? (Credit: Los Angeles Times)

Chapter four then considers the question of ‘Do voters actually prefer Celebrity Candidates over more Traditional Politicians’. Here’s where things get kinda scary because although in poll after poll people claim that they do not prefer celebrities in fact such absolute amateurs as Arnold Schwarzenegger, Sonny Bono and Jesse Ventura, to say nothing of Donald Trump, have all been elected to high office. People it seems do not want a polltaker to think they would vote for a celebrity, but in fact they often do.

Despite absolutely no experience in either politics or government Arnold Schwarzenegger was elected governor of the most populace start in the US. Why did anybody think he’d do a good job? (Credit: YouTube)

Psychologists often use a technique known as a ‘Paired Choice Experiments’ in order to gage the true reactions of people when we’d rather not have our true reactions known. As an example when given a choice between the extremely well known celebrity Oprah Winfrey or the much less known US Senator Cory Booker the TV star wins easily, the seven advantages mentioned above that celebrities have now become more relevant.

One big Advantage Celebrities have over more traditional politicians is in fundraising. Their legions of fans can usually be counted on to big in the cash needed in today’s elections. (Credit: Wild Apricot)

Finally Dr. Wright considers the effect that celebrity candidates are having on the very fabric of our democracy. Several times she uses quotations from ‘The Federalist Papers’ to show how our founding fathers feared the rise of a popular demagogue and how that fear seems to be coming true today. Celebrity candidates are with us for good or ill, and we are just going to have to adjust to them.

One type of political figure that our founding fathers feared was the demagogue, a person with so much fame that they can seize too much power and by using the mob, make themselves a dictator. (Credit: Simon and Schuster)

I do have several criticisms of ‘Star Power’ however. For one thing while the book does show some charts displaying data it could use a lot more. Dr. Wright often talks her way through a lot of data rather than showing it. As a firm supporter of ‘a picture is worth a thousand words’ I like charts and ‘Star Power’ needed more charts. Another similar problem is that of paragraphs, over and over again there are pages with only two or three paragraphs, and my copy of ‘Star Power’ had small print so there were a lot of sentences running together in each paragraph. These two defects combine to make ‘Star Power’ a bit difficult to read, I found myself growing blurry eyed at times.

Which is exactly what almost happened on January 6th of 2021. Clearly the celebrity candidate is a something that has to be considered in a democratic society. (Credit: The Washington Post)

Which is a shame because ‘Star Power’ is a very important book, about a subject that needs a comprehensive but still accessible book to help the public understand the issues at play. For all its faults I recommend ‘Star Power (American democracy in the Age of Celebrity Candidates) as one small thing we can do to help preserve our democracy.

Paleontology News for November 2022:

Paleontology is the science that’s all about origins. Whether it be the origin of life itself or the beginnings of a certain aspect of some living creatures, let’s say warm bloodiness, paleontology seeks to understand when and how the different characteristics that living creatures possess came to be. In this post I’ll be discussing three such important characteristics and as usual I’ll begin in the distant past and work my way forward in time.

O’k ‘The Cambrian Explosion’ is really just a metaphor but the sudden appearance of so many different life forms at the same time was a unique event in the history of life. (Credit: Think Big)

I have mentioned the Cambrian period several times in these posts, see posts of 16 June 2018 and 2 December 2020. The Cambrian is unique in the history of life because that is the time when a large diversity of living creatures first appears in the fossil record, a phenomenon known as the Cambrian explosion. In the fossils from the Cambrian however we can already recognize animals that are clearly molluscs, or echinoderms, or worms, or arthropods. In other words the major groups of animals known as phyla are already distinct, which means a lot of evolution has already happened. If we want to study the relationships between those major groups, say that between the segmented worms and arthropods, we need fossils that are either from before the Cambrian or from a creature in the Cambrian that contains features unique to two or more distinct phyla.

In order to understand how the various phyla of animals are related to each other we either need evidence from before the Cambrian or ‘missing links’ that share characteristics of two or more phyla. (Credit: ResearchGate)

A recent fossil from China falls into that latter category. The creature is a one centimeter long worm like animal covered with both armoured plates and hair like bristles that has been given the name Wufengella. This creature packs a lot of anatomy into its tiny frame linking three different phyla, the brachiopods (bivalved animals that are not related to clams), bryozoans (known as moss animals) and phoronids (horseshoe worms).

Wufengella, from the late Cambrian, appears to be one of those Missing Links, having features of several very different types of creatures. (Credit: Wikipedia)
Brachiopods (l) may superficially look like clams (r) but the animal inside the bivalve shell is completely different, from a different phyla. (Credit: Wikipedia)

The fossil has been dated to 518 million years ago, near the end of the Cambrian period and so therefore it is not a ‘missing link’ ancestor to those three phyla but rather a now extinct cousin of the brachiopods, bryozoans and phoronids who possessed features of them all. The paper describing Wufengella was published in the journal Current Biology and was written by a large group of paleontologists from a number of universities in both China and the United Kingdom illustrating once again the value to science of cooperation between nations no matter what the quarrels created by their governments.

The original fossil of Wufengella (l) and an artists rendering (r). (Credit: Sci.ners)

One anatomical structure that is of critical importance to many animals is the one with which they eat, their jaw. Different types of animals built their jaws in different ways, arthropods for example built their jaws from modified legs, that’s why close ups of insects eating look so creepy to us. Humans and other vertebrates however developed our jaws from bones that originally held our gills in place, that’s why human fetuses still develop gills about five weeks after fertilization, if we didn’t we wouldn’t have either a jaw or an inner ear.

Human Embryos do in fact develop gills and gill slits. That’s where our jawbones came from and where they first appear. (Credit: Vedantu)

In a previous post I discussed how the early jaws of vertebrates evolved and diversified in the Devonian period, some 400 million years ago, see my post of 30 April 2022, but how the very first vertebrate jaw evolved is still a subject of debate among paleontologists. The one thing that was agreed upon was that, since there were so many different vertebrates with so many different sizes and shapes of jaws during the Devonian, the first jaw must have developed before that time, perhaps during the preceding Silurian period, around 440 million years ago.

By the Devonian period many species of fish possessed jaws. This guy’s are quite impressive. In order to find the first fish with a jaw paleontologists have had to go further back, into the Silurian period. (Credit: The applied Ecologist)

Now a series of four papers in the journal Nature have described a series of early species of jawed fish from the Silurian that are so diverse that they may force paleontologists to look even further back for the first jaw, perhaps as far as the Ordovician period some 480 million years ago. The Silurian fossils were unearthed in a pair of fossil beds outside of Chongqing in southern China and contain both cartilaginous fish, like modern sharks and rays, along with bony fish.

The species discovered represent not only a variety of different types of jaws but different body types, from the wide flat bottom dwelling shape of Xiushanosteus mirabilis and Tujiaspis vividus to the sleek, fast swimming shark like shape of Shenacanthus vermiformis and Fanjingshania renovata. With so much diversity it is obvious that the fish unearthed in China have a lot of evolution behind them, meaning that paleontologists will have to look even further back in time, to the Ordovician period in order to understand how the earliest members of our own phyla came into being.

With a life style that probably resembled a founder’s Xiushanosteus mirabilis already had a well developed jaw when it lived during the Silurian. (Credit: The New York Times)
Shenacanthus vermiformis was a very different kind of fish but, like X mirabilis it too had a well developed jaw. So the common ancestor of this two species, the first jawed vertebrate, must have lived even earlier. In the Ordovician perhaps? (Credit: The New York Times)

Moving forward in time another important innovation in vertebrate animals is the wing, which has allowed thousands of different species to fly. Nowadays when we think of wings we think of birds or bats but they weren’t the first vertebrates to fly, that honour belongs to the family of lizard-like contemporaries of the dinosaurs known as the Pterosaurs.

The Pterosaurs were a large and diverse group of flying reptiles during the age of the dinosaurs but they were not themselves dinosaurs. (Credit:Wikipedia)

Now a reexamination of fossils discovered a hundred years ago in Scotland may have identified the pre-flying ancestors of the pterosaurs. Known as Scleromochlus taylori the small reptile went unappreciated in part because of the incredibly hard 237 million year old limestone blocks in which it was encased.

Not a very impressive creature the small 237 million year old reptile Scleromochlus may have been the common ancestor of the pterosaurs. (Credit: The Indian Express)

The question of how the pterosaurs evolved to fly has been debated as long as how the birds first flew and with pretty much the same arguments. Most paleontologists thought that tree climbing reptiles who began gliding from branch to branch eventually developed leathery wings which they starting flapping for powered flight. The fossils of S taylori however tell the story of a small, fast running ground runner.

Fossils in Limestone can be almost perfectly preserved, but are a bitch to get out of the rock. No wonder it took a long time to discover just exactly what S taylori was. (Credit: Wikimedia Commons)

The researchers at Edinburgh University discovered the connection between S taylori and pterosaurs only when they performed CT scans of the limestone encased fossils revealing for the first time some of more delicate details of the animal’s anatomy. Details like a head too large for its body and a femur with a hook to it that fits into a slot in the hip so that the animal’s legs go straight downward instead of sidewards like a lizard’s or crocodile’s.

Nowadays paleontologists use advanced technology in order to learn everything they can about their fossils. (Credit: Rapid City Journal)

S taylori was a runner, catching insects near the ground and maybe it started using flaps on its forearms to help it catch its prey. Flaps that got larger and larger until the creature took off like…well, like a pterosaur!

The pterosaurs were the largest animals to ever fly. The sight of one of these babies soaring overhead would have put an eagle to shame! (Credit: Biosphere Magazine)

By studying the anatomy of ancient life paleontologists not only learn about the lives of creatures of the past but of how different species relate, the family tree of life on Earth.

Astronomy New for November 2022: Saturn’s Rings and the end of planet Earth. Don’t worry it’s not for a while yet.

Nowadays we’re all used to seeing beautiful images of astronomical objects, whether from Hubble or now James Webb or from some other observatory. To my mind however, nothing beats seeing the planet Saturn with your own eyes through even a small telescope. Somehow looking through a telescope is different; maybe it’s the movement of the air causing a little shimmer that makes it seem different from an image.

A beautiful image of the planet Saturn even showing a ring of Aurora around the south pole. (Credit: Hubble Space Telescope)

 Of course it’s the rings that make Saturn the most beautiful planet to see. They just seem so unreal, fairy like in a sense. And in a telescope they seem to be as solid as the planet they circle, even though in your mind you know that they are actually made up of trillions, hey millions of trillions of small snowballs. Each snowball a separate moon with its own orbit around Saturn.

From here on Earth it looks like Saturn only has a few rings but up close it’s easy to see hundreds if not thousands of small ringlets in this enhanced image taken by Voyager 2. (Credit: NASA Space Place)

Back before the space age it was thought that only Saturn had rings, you couldn’t see any around any other planet using the telescopes of the 1950s or earlier. Some astronomers claimed to see faint rings around Uranus but it wasn’t until 1977 that observations by James Elliot, Jessica Mink and Edward Dunham convinced the astronomical community that Uranus did indeed have rings. Then in 1979 as the Voyager 1 space probe was flying by Jupiter a couple of its images of the giant planet showed a faint ring system, a discovery that Voyager 2 would confirm a few months later. Finally in 1989 Voyager 2 found that the last of the solar systems gas giants, Neptune also had a set of rings. Since all of the solar systems giant planets are now known to have rings astronomers have begun to wonder if there is some connection, do all gas planets, even those in other solar systems, have rings.

After Saturn the planet Uranus has the best set of rings as seen in this Hubble image. (Credit: Universe Today)

Which of course begs the questions, why do any planets have rings? How do rings form, and how long do they last. Since we’ve never actually seen a ring system forming we really only have theories and educated guesses and astronomers have argued for decades over the details.

One thing we do know about planetary rings is that they are not solid but made up of billions and billions of small moonlets. (Credit: Shutterstock)

For a big ring system like Saturn’s the leading theory has always been that one of the planet’s moons got too close and was disintegrated by tidal forces generating the trillions of particles making up the rings. As I said that theory has been around for nearly a hundred years but now a new analysis by a team of astrophysicists at MIT is using data collected by the Cassini spacecraft that studied the Saturn system between 200 and 2017.

Two major models for how Saturn’s rings formed. Either a moon got to close to Saturn and was pulled apart by tidal forces or an object from the Kuiper belt got to close. (Credit: Science)

As you may remember, NASA ended the Cassini mission by taking the space probe closer and closer to the giant planet until it finally burned up in Saturn’s atmosphere. By tracking Cassini’s path as it got closer and closer the researchers were able to actually measure the distribution of Saturn’s mass within its body, in other words how much of Saturn’s mass was deep in the planet’s core, how much near the surface etc.

The Cassini spacecraft studied Saturn and its moons for thirteen before plunging itself into the giant planet’s atmosphere and burning up! (Credit: Jet Propulsion Labouratory)

That distribution, technically known as the ‘moment of inertia’ was the missing piece of the puzzle to carry out hundreds of computer simulations of an ancient moon of Saturn, which has been given the name of ‘Chrysalis’ being torn apart by the planet’s gravity to form the rings. According to the simulations Chrysalis was about the size and mass of Saturn’s remaining moon Iapetus, about 700 km in diameter. What happened to Chrysalis is that roughly 160 million years ago the gravity of Saturn’s big moon Titan sent Chrysalis too close to the planet where it broke up. So our best estimate now is that Saturn’s big, beautiful ring system probably formed during the age of the dinosaurs!

The beginning of the end for Chrysalis? That’s the leading model for where Saturn’s rings came from. (Credit: PBS Learning Media)

The same thing may happen before too long, cosmically speaking with another moon around planet in our solar system. Phobos, the larger, closer moon of Mars is getting ever closer because of tidal forces drawing it towards the planet. It has been estimated that in about 50 million years Phobos will start to break apart giving Mars a ring system of its own.

Phobos, the bigger, and closer moon of Mars. Are those lines stretched across the moon’s surface signs that Phobos is being pulled apart? Astronomers think that may be so! (Credit: NASA)

Before I go I would like to mention several news stories that have been circulating about the eventual fate of our own planet Earth. According to the stories, based on a paper published in the Astrophysical Journal, as the Sun uses up its hydrogen fuel its core will shrink and grow hotter until it begins to burn helium as a fuel. As the core gets hotter the outer surface of the Sun will expand turning the Sun into a red giant star like Betelgeuse or Antares. As the Sun’s atmosphere expands it will engulf the planets Mercury and Venus and perhaps even our Earth. the news stories hasten to assure their readers that these events will not occur for another 4-5 billion years.

When a star runs out of its hydrogen fuel it begins to burn helium. That causes the star to puff up and become a red giant star. The familiar stars Betelgeuse and Antares are both red giants. (Credit: Forbes)

Well actually that’s all been known since about the 1950s when astrophysicists combined the data from the Hertzprung-Russell diagram with nuclear research to determine the life cycle of stars. That was when the idea that our Sun was a ‘main sequence’ star with a life span of about 10 billion years and was about half way through that span was developed. After the main sequence our Sun will have just about one billion years as a red giant. The question of whether or not the Sun will expand enough to devour the Earth has been debated now for more than 60 years.

The Hertzprung-Russell diagram of star absolute brightness versus surface temperature. This diagram was instrumental in understanding the life cycle of stars. (Credit: Center for Astrophysics and Supercomputing)

What the new study was actually about was what would happen to those planets, Mercury and Venus and maybe Earth, that are engulfed by the Sun as it grows. Once again computer simulations were carried out giving a range of possible fates for those planets but anyway you look at it the planets will certainly be destroyed.

Astronomers think that about 5 billion years from now, as the Sun becomes a red giant, there’s about a 50-50 chance that our Earth will be devoured. In either case our planet won’t be a pleasant place to live anymore! (Credit: Forbes)

But then nothing lasts forever, even planets.

Review: House of the Dragon on HBO Max

The first season of HBO’s new series ‘House of the Dragon’ has finished and so I’ll take this opportunity to give my two cents worth. As I’m sure everyone reading this post knows ‘House of the Dragon’ (HOD) is a prequel to HBO’s massively successful series ‘Game of Thrones’ (GOT) and the network hopes to capitalize on the popularity of its biggest ever hit.

HBO’s House of the Dragon (HOD) is the prequel to the network’s hugely successful Game of Thrones (GOT) with much of the same production staff and even input from the creator of GOT George R. R. Martin. (Credit: IGN Nordic)

As a prequel HOD is more constrained in what new ideas can be portrayed than could be done in a sequel. For example, since in the final season of GOT the supernatural creatures the ‘White Walkers’ were totally defeated and destroyed a sequel could replace them by introducing a completely new supernatural foe, maybe some sort of amphibious creature or bat like people. A prequel on the other hand cannot introduce anything too important that’s completely new without explaining why that new thing never got mentioned in the original show. 

As a prequel HOD cannot introduce any new ideas or important characters that would cause anachronisms (literally out of time) in the already broadcast GOT. (Credit: IMDB)

HOD definitely succeeds in not going outside the bounds of a prequel. In fact it may succeed too well because whereas GOT is a sprawling tapestry of many stories woven into one, HOD is much more narrow in theme, too narrow in my opinion.

HOD is really just a family squabble played out across the background of seven kingdoms. Nevertheless by concentrating on a single family it loses much of the complexity and variety that made GOT so interesting. (Credit: IMDB)

Season one of HOD concerns itself with the political intrigue between two branches of the Targaryen dynasty that rules the ‘Seven Kingdoms of Westeros’. In HOD the Targaryen family rules Westeros because they control the dragon’s that are by far the most fearsome weapon in the whole GOT Universe.

Since their power comes from their dragons the Targaryen family has taken to revering, almost deifying the creatures. By the way many people have begun to criticize the cinematography of HOD as simply being so dark it’s hard to see what’s happening! (Credit: NPR)

King Viserys Targaryen is the fifth king of that line and when his wife dies in childbirth Viserys names his daughter Rhaenyra as his heir rather than his hot-tempered brother Daemon. Things get even more complicated when Viserys marries a second time to the lady Alicent Hightower who bears the king two sons. The marriage between the old king and the young noblewoman was the contrivance of Alicent’s father Ser Otto Hightower, the king’s first minister, known as ‘the Hand’. Ser Otto seeks to increase his own power by putting his grandson on the iron throne as king. It’s in episode 9, when King Viserys dies that the peace of Westeros unravels as the various claimants grab for power. 

As HOD begins the young noblewomen Rhaenyra Targaryen and Alicent Hightower are the best of friends. That doesn’t last long however, not when there’s the throne to be taken. (Credit: Vanity Fair)

And so we have a tale of political intrigue worthy of GOT, but GOT was about a lot more than just than just political intrigue. In GOT in addition to the fight over the iron throne after the death of King Robert Baratheon between House Stark and House Lannister there were the adventures of Daenerys Targaryen across the narrow sea in Pentos, there were the adventures of Jon Snow beyond the Wall in the north, and there were the adventures of Arya Stark with the Assassins, plus a lot more.

George R. R. Martin freely admits that much of his inspiration for GOT came from England’s ‘War of the Roses, a war for the English throne between two branches of the same family. GOT however also went beyond that simple conflict to explore a unique and interesting world while HOD is just a family quarrel. (Credit: Ancient Origins)

There was also a lot more magic, whether it be Bran Stark with the Raven’s eye, or the witch Melisandre along with the religious fanaticism of the High Sparrow, and I’ve already mentioned the demonic White Walkers. In other words there were a lot of things going on at once, I haven’t mentioned a tenth of everything that happened in GOT and trying to keep it all straight was part of the fun. If one story ever got a little boring there were a half dozen other stories to keep your interest.

In GOT the gift of clairvoyance was represented by the three eyed raven (r). Bran Start (l) had it. Aside from dragons there’s a lot less magic in HOD. (Credit: Diply)

 HOD isn’t that complicated, and therefore it just isn’t that fascinating. It also isn’t as surprising as GOT was, remember the Red Wedding! A lot of things happened in GOT that were totally unexpected, but that certainly isn’t true of HOD where everything is pretty much predictable. In fact we’re told about Ser Otto Hightower’s plans to put his grandson on the throne at least a dozen times over five episodes before the king dies.

GOT’s ‘Red Wedding’ just before the blood starts to flow. GOT made a point of killing off major characters suddenly and sometimes almost pointlessly, in a sense almost like real life. HOD hasn’t shown that same spontaneity however. Everything that happens is is pretty much telegraphed well ahead of time. (Credit: Herald Sun)

I’ll add one more criticism, at the beginning of GOT we’re told that the Night’s Watch who guard the northern wall are just a shadow of their former glory and at the same time GOT starts with no dragons still alive. Well, when I heard that they were doing a prequel I was hoping to see the Night’s Watch at full strength and learn a little about what happened to the dragons. So far I’ve been disappointed on both counts.

Winter is Coming. In GOT the Night’s Watch were tasked with guarding ‘The Wall’ that kept the wild peoples and supernatural creatures of the north out of the ‘Seven Kingdoms of Westeros’. (Credit: winteriscoming.net)

Now this is only the first season of HOD, and to be honest GOT got a lot better in season 2. Still HOD seems to be much more committed to its main story and when that story sags the whole show becomes uninteresting. And that’s one thing Game of Thrones never was.   

Education in the United States has been suffering for decades and now we are beginning to see how much further damage the Covid-19 epidemic has done.

In several previous posts I have argued that the United States became the world’s richest and most powerful country not because of our many freedoms, nor thanks to our heroic military. No, in my opinion the US owes it’s status as the world’s superpower because of its educational system, because of our nation’s determination that all of its citizens should have free access to primary and secondary schools while at the same time taking an active role in helping its brightest young people to attend college, whatever their families financial situation. For over a hundred years, from about the 1880s into the 2000s the US graduated more high school students and more college and university students than any nation on Earth. See my posts of 23 June 2021 and 12 July 2017.

Dozens of Colleges and Universities here in the US were initially funded by land grants from the Federal Government. This active promotion of education at all levels of government is the primary reason we now enjoy our status as the world’s richest nation. (Credit: Urban to Ag – WordPress.com)

The benefits of having the world’s largest and best public educational system should be obvious but because so many people nowadays are blind to the obvious I’ll take a moment to mention just a few. By educating its large population the US possessed the trained workforce needed to build the wealthiest economy in history. With the largest number of scientists and engineers that economy grew ever more productive as new inventions were developed and old problems were solved. To put it simply the United States of America had the well-educated, well-trained people it needed to get things done and that, more than any other reason, is why the 20th century was the American century. America’s dominance in science and industry was only made possible by America’s dominance in education.

We used to honor education and our educators in this country. Maybe we’d better get back to doing that. (Credit: ebay)

All that began to change about forty years ago during the Reagan administration. Reagan’s emphasis on lower taxes and smaller government did not immediately effect education, at least it wasn’t supposed to. As time went on however and lowering taxes became the only “proper” way to boost the economy shrinking government budgets meant less money for education leading to lower teacher salaries, larger classroom size and poorly maintained, crumbling schools and school facilities.

Reaganomics does not work. All it has done is caused ever growing deficits and debt while causing an enormous decline in education and infrastructure. (Credit: Mar Martinez Blog)

Public schools faced another threat as well as the “private sector” of the economy came to be preferred over the “public sector”. Private, charter schools grew in number as some parents sought to insulate their children from the growing problems at public schools. Charter schools possessed several advantages over taxpayer funded schools. For one thing since they were not legally obliged to accept all students so that any child who became a disciplinary problem was simply expelled and sent back to the public schools. Because of this, over time discipline in many public schools, especially inner city public schools grew worse and worse when compared to their private school rivals. And because of that those parents who cared about their children’s education more and more sent their kids to charter schools, a vicious feedback mechanism that continues to increase the gap between private and public schools even today. 

Charter Schools are ‘For Profit’ institutions. Hence they exist to make money not educate students. When a charter school fails it simply closes its doors leaving its students without a school to attend. (Credit: Weapons of Mass Deception)

Recently even higher education has begun to feel the strain. College enrollment, which reached a peak of 70% of recent high school graduates in 2016, had dropped a full 7% to 63% by just 2020. The causes for this are many but the increasing cost of a college degree along with stories of the crushing debt of student loans on people with bachelor’s degrees has made a growing number of young people question the value of higher education, whether or not a four year degree is really worth the time and money. In fact the state of higher education has declined so much that while back in 2000 the US was second in the world for the proportion of its population between the ages of 25 and 34 with a college degree by 2020 it had fallen to 16th.

The growth in numbers of high school graduates going on to college that occurred during the last half of the 20th century has ended in the 21st, and may even be going down! And that was before Covid! (Credit: Admissionly.com)

So all in all the state of education in this country was pretty bad and getting worse BEFORE the pandemic set in. For the past two years students have been in and out of classrooms, either trying to learn remotely at home on a computer, or at school while social distancing and wearing a mask. The confusion and uncertainty must have surely combined to make learning all that much more difficult.

I don’t know about you but I’m tired of talking about Covid. Unfortunately it’s still out there effected nearly every part of our lives, even education. (Credit: CDC)

Now the results of standardized testing for 9 year olds has shown the effect that Covid-19 has had on education in this country. The National Assessment of Educational Progress tests have been conducted since the 1970s as a means of quantifying the basic ability in math and reading of third graders throughout the country. This year the tests were given to 14,900 nine year old third graders and the results compared to those taken in 2020 immediately before the pandemic.

The worst part of the decline in students test scores is that the students that needed the most help saw the biggest decline. (Credit: John Locke Foundation)

The comparison showed a dramatic difference. For the first time ever math scores declined while reading scores saw their largest drop in over thirty years. Worse, the declines were not evenly spread across all ability levels. In math the top 10% of students saw a decline of only 3 points while the lowest 10% saw a 12 point drop, four times as great. And the decrease had a racial component to it as well. Black and Hispanic students on average saw a full 13 point drop compared to only a 5 point drop for the White counterparts. The declines in reading were similar and together they indicate that two decades of progress in education had been wiped out a little over a year.

Minority students had been making considerable progress, catching up to their white counterparts between the years 1970 and 2017. At least some of that progress has been lost due to the pandemic. (Credit: Education Next)

And for children falling behind in first, second or third grade can lead to continuing problems throughout their school careers. So it is that our nation’s educational system, which has been suffering from neglect for decades, has now been further damaged by the pandemic.

Students who fall behind in elementary school rarely catch up. All to often a human brain is already wasted before they are 10 years old! (Credit: Vox)

I’d like to end this post on a somewhat more hopeful note. On the 24 of August President Biden issued an executive order eliminating $10,000 dollars in student loans for millions of Americans and up to $20,000 dollars for Pell grant recipients. Only time will tell if this is the beginning of renewed emphasis on education in this country, but at least it’s something.

P.S. Just a few days after publishing this post another report was released that details the math and reading abilities of 4th and 8th graders here in the US. The National Assessment of Educational Progress, often referred to as the nation’s report card, has been tracking the advancement of our country’s children since the 1990s and this year’s report showed the biggest decline in math and reading scores ever measured.

According to the report math scores for eighth graders fell in every state, every state, with only 26 percent of students showing proficiency in math, down from 2019’s 34 percent. Fourth graders did little better with 36 percent showing proficiency, down from 41 percent, while there were declines in 41 states. The results for reading were little better with 33 percent of fourth graders and only 31 percent of eighth graders being proficient. Once again the scores for the most vulnerable students saw the biggest drops clearly showing that we are in danger of producing an entire generation of the uneducated at just the time when our nation needs all the brains it can get.   

The Nobel Prizes for 2022 are Announced. This year it’s the award for Physiology that’s the most interesting and unusual.

It’s early October and that means it’s Nobel Prize time, the one time of the year when the media pays at least some attention to science.

TV doesn’t completely ignore Science, there are a few good Science programs like PBS’s Nova. However compared to all of the cop and doctor shows finding anything about Science is like looking for a needle in a haystack. (Credit: PBS)

The prize for physiology or medicine came first this year on the 3rd of October and the award went to arguably the most interesting of all of this year’s recipents. The winner was the Swedish geneticist Svante Paabo who was honoured for his work in sequencing the entire genome of our ancient cousins the Neanderthals and comparing it and the DNA of another extinct close relative the Denisovans to that of modern humans. 

Nobel laureate Svante Paabo with one of his research subjects. (Credit: ABC News)

Dr. Paabo spent more than 20 years assembling bits and pieces of Neanderthal DNA from the best preserved teeth and bones of that extinct species. The task was made more difficult because the minute amounts of ancient DNA that are preserved in fossilized samples can easily be swamped by modern DNA from bacteria or even the paleontologists who unearthed it. In order to carry out his work Paabo first had to develop the clean room facilities and policies that would minimize contamination and even then he had to learn how to separate the ancient DNA from whatever modern DNA that still remained.

Finding ancient DNA is no easy task. Much of it is lost and what little remains can be swamped by the DNA of the scientists unearthing it. (Credit: Nobel Prize)

When Dr. Paabo finally succeeded in assembling the entire Neanderthal genome what he discovered was that the Neanderthals haven’t quite gone extinct. In fact around 50,000 years ago there was a good deal of mixing going on between our ancestors and both the Neanderthals and Denisovans so that today most Europeans and Central Asians have as much as 5% of their genes coming from those ancient relatives.

It’s not quite this straightforward but all of us have inside us the remains of our ancient past. (Credit: Goodreads)

The next day the Physics award was announced and this year’s Nobel went to John Clauser for work carried out in the 1970s at the Lawrence Berkeley Labouratories in California, Alain Aspect, who extended Dr. Clauser’s work during the 1980s at the University of Paris along with Anton Zeilinger of Austria who continued the work of Clauser and Aspect. What the three men studied that won them their Nobel was the strange, almost eerie phenomenon called quantum entanglement, a concept that Einstein rejected as ‘spooky action at a distance’.

This year’s winners of the Nobel Prize in Physics. From left to right Alain Aspect, John Clauser and Anton Zeilinger who all contributed to our knowledge of quantum entanglement. (Credit: Nobel Prize)

Quantum entanglement occurs when two or more particles are placed into a system whose characteristics are measured; let’s say a system of two particles with one spin up and the other spin down. If the two particles are then carefully separated, careful being why Clauser, Aspect and Zeilinger received a Nobel prize, the particles remain entangled so that if one is measured to be spin up then the other, no matter how far away it may now be, has to be spin down.

Einstein didn’t like the concept but thanks to the work of Clauser, Aspect and Zeilinger we now know that quantum entanglement is a real part of our Universe. (Credit: NASA)

Besides being an interesting phenomenon in its own right quantum entanglement also has practical applications in the fields of quantum information and quantum computing. So the work of Doctors Clauser, Aspect and Zeilinger may become even more important in the next few decades.

The next revolution in computers may be quantum computers, which operate on principles related to quantum entanglement. (Credit: DUG Technology)

The Nobel prize for Chemistry came next and was announced on the 5th of October. This year’s award went to Carolyn R. Bertozzi of Stanford University in California, Morten Meldal of the University of Copenhagen in Denmark along with K. Barry Sharpless of the Scripps Research Institute in the USA. The three chemists were awarded the prize for their research into ‘click chemistry’ different techniques that allow molecules to be clicked together like lego blocks in order to build larger molecules.

This year’s winners of the Nobel Prize in Chemistry are, left to right, Carolyn Bertozzi, Morten Meldal and K. Barry Sharpless. This is Dr. Sharpless’ second Nobel a feat only accomplished by five scientists. (Credit: The Washington Post)

It was Doctor Sharpless who coined the term click chemistry in the year 2000 when he and Doctor Meldal independently discovered a chemical reaction called copper-catalyzed azide-alkyne cycloaddition that has allowed a tremendous number of different large molecules to be assembled. Doctor Bertozzi then extended the concept to chemistry performed on biomolecules, often molecules on the outer surface of living cells. These developments have led to new medicines for the treatment of cancer and the sequencing of DNA.

Alkyne-Azide was the original click developed independently by Sharpless and Meldal but in the years since other such techniques have been discovered. (Credit: Research Gate)

The chemistry prize was notable for two other reasons because Dr. Bertozzi is the only woman to be awarded a science Nobel this year, becoming only the eighth woman to do so. Also, Dr. Sharpless’ award makes him the fifth person to receive two Nobels, his first came in 2001 for his work on chirally catalyzed oxidation reactions.

The element Copper is very toxic to living cells so Dr Bertozzi developed a copper free form of click chemistry. (Credit: GeneLink)

Finally on the 10th of October the economics prize given ‘in memory of Alfred Nobel’ was awarded to Ben Bernanke, the former head of the US Federal Reserve along with Douglas Diamond of the University of the University of Chicago and Philip Dybvig of Washington University in St. Louis. The three men were honoured for their work on the role of banks in financial crises.

And the Nobel Prize for economics goes to, left to right, Ben Bernanke, Douglas Diamond and Philip Dybvig for their work on Banks during financial crises. (Credit: Kyodo News)

While the studies carried out by Bernanke, Diamond and Dybvig were conducted back in the 1980s the results became very important during the financial crisis that shook the world’s economy in 2008. Ben Bernanke was of course Federal Reserve Chief at that time and so he had the opportunity to put his own research into action.

Ben Bernanke’s position as Chief of the US Federal Reserve during the financial crisis of 2008 gave him the chance to put his theories to good use. (GAO)

Bernanke’s work demonstrated how bank failures during the great depression of the 1930s were not caused by the initial recession but instead drove the recession into a deep depression. Bernanke showed how the loss of information about lenders that occurred when banks failed made it difficult for the economy to recover, lengthening the time of the depression. Diamond and Dybvig meanwhile investigated the role of banks in linking lenders and borrowers in ways that are mutually beneficial to both.

The man and his prize. Alfred Nobel funded the prizes in his honour in his will. (Credit: Famous Scientists)

Alfred Nobel’s intend in establishing his prizes was to encourage new and innovative discoveries that would be valuable to all humanity. The work of this year’s recipients demonstrate how well he succeeded.  

Space News Special: NASA’s Double Asteroid Redirection Test (DART) is a successful first demonstration of a Planetary Defense Shield.

One of Hollywood’s favourite science fiction plots is that of a massive asteroid or comet headed straight for our planet, a threat to our civilization if not to all life on Earth. The recent movie ‘Don’t Look Up’ (See my Post of 5 January 2022) is just one of many such productions. Of course one reason that the plot is popular is that the threat is actually very real; 66 million years ago the dinosaurs were driven to extinction by a space rock some 10 kilometers in diameter colliding with the Earth.

A somewhat more serious take on the end of the world by asteroid was the 1998 film ‘Armageddon’. (Credit: Rotten Tomatoes)

While 66 million years may seem like a long time scientists are now coming to realize that collisions with smaller asteroids are fairly common, and can still be quite destructive. Archaeologists now have evidence that it may have been an asteroid strike that gave birth to the legend of Sodom and Gomorrah (see my post of 6 October 2021) while the demise of the mound builder culture here in North America has also be linked to an asteroid. So the possibility of a large space rock coming down in the middle of a densely populated area and causing a tremendous amount of destruction is very real.

In 1908 a meteor crashed in the Tunguska region of Siberia. Fortunately few people were hurt because the region was so remote but few such unpopulated areas exist anymore so the next such event could cause enormous destruction. (The Conversation)

Before the space age there was really very little that humanity, or indeed any of Earth’s species, could do to protect themselves from an asteroid strike. The dinosaurs certainly had no idea an asteroid was taking aim at them and they surely all died having no idea what it was that was killing them.

They surely had no idea! (Credit: Space.com)

We can do something to protect ourselves however, we have the technology. Our successes in space have given us the ability to not only see a potentially dangerous asteroid before it strikes, hopefully years before it strikes, but we can even send a spacecraft to that asteroid in a effort to prevent that strike from ever happening.

There are literally thousands of Near Earth Objects, space rocks whose orbit around the Sun comes close to our Planet’s. Fortunately space is awfully big so we don’t get hit very often! (Credit: Astronomy Magazine)

So the question becomes, what is the best way to stop an asteroid that’s headed straight at our planet. Well Hollywood producers certainly knows how they’d do it, nuke the bloody thing. Trouble is that blowing up an asteroid doesn’t completely solve the problem, it could even make the things worse. After all when you blow up something there are still a lot of pieces of it left. So blowing up an asteroid headed for Earth just means you now have a lot of smaller asteroids headed for Earth.

We may like to blow things up but that’s probably not the best way to avoid getting hit by an asteroid. (Credit: YouTube)

NASA’s plan for dealing with a potentially dangerous asteroid is far more gentle. For one thing the space agency has organized and funded dozens of astronomers to search for any ‘Earth Crossing Asteroids’ that could become a danger in the years to come. They have found several thousand but so far fortunately none of them will strike our planet within the next fifty or so years. What NASA hopes is that, when a dangerous asteroid is finally found we will have years if not decades of warning. That will be enough time to deal with any dangerous asteroid more efficiently, more effectively and even more cheaply.

NASA’s DART Mission to test a possible technique for protecting Earth from dangerous asteroids. The idea is to crash a small spacecraft into an asteroid to see how much we can alter its trajectory. (Credit: Applied Physics Labouratory, Johns Hopkins University)

The idea is to simply nudge the asteroid, not much, just a little. Given enough time, let’s say exactly one year, a change of just one meter per second in the velocity of an asteroid that is headed straight for Earth is all that is needed to cause that asteroid to miss our planet by more than 30,000 kilometers, a fair safety margin. That’s all, just one meter per second to save the Earth, if done early enough.

We all know the old story. Slow but steady wins the Race. (Credit: VirilityUnemployed)

But can an asteroid be nudged? Are they solid enough bodies to be gently pushed, or are they just piles of rubble that might break up from even a nudge? Will slamming a projectile into the asteroid work or will we have to spread our push out in order to keep the asteroid in one piece?

Those are some of the questions that NASA’s Double Asteroid Redirection Test (DART) was designed to find out. Launched on the 23 of November in 2021 the Dart spacecraft was targeted at a system of two asteroids, the larger asteroid is named Didymos and is about 780 meters in diameter. Didymos is orbited by a smaller asteroid named Dimorphos, which is roughly 160 meters in diameter.

The DART Spacecraft isn’t going to study Dimorphos but crash into it. Therefore it only carries the instruments it needs to steer it at its target. (Credit: DART)

The plan was for the DART spacecraft to slam into the smaller asteroid Dimorphos at approximately 6 kilometers per second (kps) after which astronomers will measure the change in Dimorphos’ orbit around Didymos. You see the reason for choosing the smaller in a two asteroid system as a target is that it has always been easier for astronomers to measure the time an astronomical event takes compared to the distance to an astronomical object.

Human beings learned how to measure time by watching the rhythm of the objects in the sky and even today it is easier to measure time in astronomy than distances. (Credit: www.astronomy.ohio-state.edu)

Think about it, how would you, all by yourself measure the distance to the Moon? But, with only a little effort you could measure the time it takes to go from full Moon to full Moon, at least approximately. Ancient astronomers actually knew pretty accurately the time it took the various planets to orbit the Sun before they knew that the planets really orbited the Sun not the Earth.

Measuring the distance to the Moon requires two different observers plotting the Moon’s position against the stars at the same time from a great distance apart. (Credit: Medium)

Before DART reached Dimorphos astronomers had measured the orbital period of that asteroid around Didymos at 11 hours and 55 minutes. It is expected that the collision with DART will reduce that orbital period to about 11 hours and 45 minutes but again astronomers can take their time and get a very precise measurement of that change. Then, using the well-known laws of orbital dynamics, they’ll be able to calculate exactly how much they’ve succeeded in changing the velocity of Dimorphos.

Kepler’s three laws of Planetary motion are still the basis for any study of astronomy. (Credit: Teachers Pay Teachers)

The DART spacecraft got only one chance at hitting Dimorphos however, if it missed the probe and the asteroid would fly past each other at 6 kps never to meet again. So as you can imagine the atmosphere at the Applied Physics Labouratory of Johns Hopkins University was pretty tense as DART drew ever closer to its target. All the apprehension was unnecessary however for the spacecraft’s autonomous control computer behaved flawlessly. At 07:14 PM on the night of the 26th of September DART smashed into Dimorphos less than 17 meters from the asteroid’s center, a bull’s eye at 10 million kilometers.

Just seconds before the crash DART sent back this picture of Dimorphos. Like many asteroids Dimorphos appears to be nothing more than a pile of rubble. (Credit: CNN)

And DART was taking pictures the whole way in, sending back dramatic images of Dimorphos as the asteroid appeared to grow larger and larger. Not only that but the day before the collision DART had released an smaller Italian cube satellite whose job it was to take pictures of the collision from a few kilometers away. Finally there were several telescopes back here on Earth that also got in the act, taking images of the collision from 10 million kilometers distance.

DART crashing into Dimorphos (top center) as seen by the Italian LICIA cubesat. The larger asteroid Didymos is lower left. (Credit: New Scientist)

So all of the hardware worked, DART smashed right into Dimorphos exactly as planned and NASA got plenty of pictures. In the weeks to come astronomers here on Earth will determine exactly how much the asteroid’s trajectory has changed. Then we’ll know whether or not humanity has at least the beginnings, a breadboard model of a technology that could save us from going extinct the way the dinosaurs did.

Space News for September 2022: Big News for the future of Manned Spaceflight

NASA’s Artemis program continues to have problems getting off the ground while China slowly but surely moves forward with the construction of a space station. I’ll begin with the troubles of Artemis. Indeed, because of the unending problems and schedule changes happening day by day associated with the Space Launch System I’ve had to rewrite this post four times now.

How many novels would get written if the author stopped to rewrite each sentence seven times??? (Credit: TextCortex AI)

Artemis is the name given to NASA’s long, and I do mean long anticipated program for returning human beings to the Moon. I have written several posts about both Artemis and the Space Launch System (SLS), the rocket that is going to be the main launch vehicle for the entire program. See post of 23 July 2022. In fact the space agency had originally expected that the SLS’s first launch would take place way back in 2016 but an almost unending string of problems has led to delay after delay.

Break down of Block one of the Space Launch System (SLS) which will be the backbone of the Artemis program taking humans back to the Moon. (Credit: NASA Blogs)

It was no surprise therefore when the originally scheduled launch date of August 29th had to be cancelled once again. The SLS was standing on its launch pad, the countdown was underway but during the rocket’s fueling process two small problems were discovered. The first was a leaky vent valve in the inner fuel tank caused by a tiny crack. Even as the first problem was being dealt with another issue came to light as one of the rocket’s four main engines could not be cooled to it proper temperature. In addition the weather at Cape Kennedy was unsuitable for a launch so NASA quickly decided to scrub the lift off.

Mission plan for the Artemis 1 spaceflight. The mission will be unmanned, if it ever gets off the ground! (Credit: NASA)

A second launch date of September 3rd was soon announced even as NASA engineers sought to resolve the two problems while still keeping the SLS at the launch pad. If it were found that major repair efforts were necessary that would require rolling the rocket back into the Vehicle Assembly Building (VAB). Such a rollback is a major process that would add weeks of delay to the mission. With fingers crossed the engineers made their preparations for a launch on the 3rd of September.

Artemis 1 on the launch pad ready to go. Well not quite! (Credit: The Verge)

The problems that plagued the SLS weren’t finished however for as fueling began on the 2nd another leak was found on a quick-disconnect hydrogen intake valve that just couldn’t be fixed while fueling was underway. Once again the launch had to be scrubbed, once again the engineers tired to fix the problem as the rocket stood on the launch pad.

A quick disconnect valve for Hydrogen fueling. Such a thing is a bitch to engineer because hydrogen is the smallest of all atoms so it can easily leak through the tiniest crack. (Credit: Reddit)

Hoping that they had finally fixed the problem of the leaky valve the SLS was subjected to a full fueling test on the 21st of September. You could imagine the sigh of relief at both NASA and Boeing when the huge rocket passed the fueling test without a single hitch. Hoping that ‘third time is the charm’ NASA set a third launch date of the 27th of September.

Not Always. (Credit: Meme Generator)

Now things begin to get a little spooky because starting around the 20th of September a low-pressure storm cell off the northern coast of South America began to intensify and grow. That storm system became hurricane Ian as it moved through the Caribbean into the Gulf of Mexico and was scheduled to slam into Florida as a major hurricane on, you guessed it, the 26th, the day before Artemis 1 was scheduled to lift off.

Hurricane Ian slamming into Florida. Needless to say NASA wasn’t going to launch a rocket into this! (Credit: NPR)

NASA quickly canceled that launch date; even if Ian gave Cape Kennedy a miss the winds will certainly be too high to permit a lift off. And to protect the $4.1 billion dollar rocket NASA, after several delays decided to roll the SLS back into the VAB.

NASA waiting until the last moment before deciding to roll the SLS back into the VAB to protect it from Hurricane Ian. (Credit: Hindustan Times)

So, with the SLS having to endure another round trip to the VAB the question becomes, how much inspection and possible repair will the rocket have to undergo before NASA will be willing to try, once again, to launch it? One thing for certain is that a launch will not be possible until late October at the earliest. Just another in a continuing series of delays in a program that almost seems to be cursed.

Back during WW2 accidents and problems were blamed on Gremlins. I guess the Artemis program must have more than its fair share of the little stinkers. (Credit: Wikipedia)

On the other hand things are going a bit smoother for the Chinese space agency in its efforts to construct that nation’s first space station. On July 24th the Chinese space agency launched the second module of its planned three-module space station from its Wenchang launch facility on the island of Hainan.

Lauch of the second module in China’s Space Station, named Wentian. (Credit: Global Times)

Christened Wentian the new module will connect with the already orbiting Tianhe module. Tianhe was designed to serve as the main living quarters for the three member permanent crew of the station while Wentian is a multi-purpose module that includes labouratory space and an airlock for Extra Vehicular Activities (EVAs). Wentian will also provide some living space during crew transfer periods when there could be as many as six people aboard the station for a day or two.

What China’s space station will look like when completed, perhaps as early as the end of this year. (Credit: Space.com)

The final module, named Mengtian is expected to be launched in October and when it is connected the Tee shaped space station will be completed. At that time Tiangong will be about 20% the size and mass of the International Space Station (ISS) but it will enable China to maintain a permanent manned presence in Earth Orbit.

Though small compared to the International Space Station above, China’s station will still give that nation a permanent presence in Low Earth Orbit (LOE). (Credit: European Space Agency)

And, as happened with the launch of the first station module, the Long march rocket that lifted Wentian into orbit circled the Earth for several days before making an uncontrolled re-entry over the Indian Ocean. The fact the China seems completely unconcerned that their 30 meter tall, 23 ton rocket could land in a populated area is a real problem going forward. The first launch of the Long March resulted in slight damage but fortunately no injuries to a small village in Ivory Coast and sooner or later some real harm will surely occur somewhere.

Re-entry of China’s Long March rocket. Sooner or later a piece of one of these rockets is going to land on top of somebody and do some real damage. (Credit: NewsBytes)

The Tiangong space station is visible on occasion at night over most of the United States, I’ve seen it a dozen times now including with its new Wentian module. Where and when the Chinese station, and the ISS are visible from your location can be found at the website .https://www.n2yo.com/passes/?s=48274#

As our Population continues to grow older the need to understand and treat dementia becomes greater. A new study shows how our lifestyle can have a profound effect on our risk for cognitive impairment.

Dementia is clinically defined as a progressive impairment in thinking, memory and behavior that negatively impacts a person’s ability to carry out the normal functions of life. At the same time dementia can also lead to emotional issues especially a significant decrease in motivation. Although dementia can be caused by traumatic events such as a brain injury or stroke it is most often a gradual affliction that develops slowly over time, hence it is often considered to be a disease of the elderly. The leading cause of gradual dementia is Alzheimer’s disease a neurological disorder where the connections between brain cells actually decay causing a slow decrease in the brain’s ability to function.

We all have occasional mental lapses but when they more frequent, and begin to interfere with our daily life it is a cause of concern. (Credit: Glasgow Memory Clinic)

Other diseases however, such as Parkinson’s, Huntington’s and even HIV and Mad Cow disease can also cause dementia. The fact that dementia has a large number of different causes, along with its gradual decline in mental ability combine to make both diagnosing and treating dementia extremely difficult.

Talk about scary, in advanced Alzheimer’s the brain it literally falling apart. (Credit: National Institute on Aging – National Institute of Health)

In fact there is no known cure for dementia and those treatments that are available, most commonly drugs known as Acetylcholinesterase inhibitors such as donepezil are used, often have only minor effect. In many cases the only effective measures to help patients of dementia are care-giving interventions to improve the quality of life even as the disease progresses.

All too often the only treatment for dementia is care giver support for the patient. (Credit: Eat This Not That)

Clinically dementia is described as progressing in four stages. The initial stage is known as Pre-dementia, which includes sensory dysfunction, especially the sense of smell, along with mild cognitive problems and changes in emotional behaviour.

Diagnosing Dementia at an early stage is not easy, once again we all have mental lapses. When exactly do they become signs of a serious problem? (Credit: MedicosNotes.com)

 The next stage is known as Early Onset of Dementia where the loss of cognitive ability begins to interfere with normal life. Commonly a patient has difficulty in finding the right words while speaking and planning and executing common tasks becomes more difficult. A common problem at this stage is a patient’s forgetting to take their medicine.

Forgetting to take your medication is a common problem with patients in Early Onset of Dementia. (Credit: Facebook)

Middle Stage of Dementia comes next. Here a patient is beginning to show definite signs of mental decline, to the extent of requiring some care giving help in order to carry out daily functions. Social judgment is also impaired as the patient begins to turn increasingly inward in their mental attitude.

Middle Stages of Dementia are generally the worse because the patient is still aware enough to know what is happening but no longer capable of taking care of themselves. (Credit: Kindly Care)

In the final stage of dementia a patient often requires 24-hour care both to carry out basic personnel functions as well as for their own safety. The patient may now lose the ability to recognize familiar faces and the desire to do anything at all in the real world. Even the knowledge of such basic activities as swallowing can be lost as brain functions diminish making simple tasks like eating and drinking difficult and dangerous.

In end stage Dementia the patient requires 24 hour care. (Credit: Devoted Guardians)

For many years it was thought that the primary risk factors for dementia were age and genetics. In other words older people were at greater risk in general while having a parent or other relative who developed dementia further increased the risk. Now however a new study from the Departments of Psychology and Medicine at the University of Toronto along with the Rotman Research Institute, also in Toronto, have shown clear evidence that lifestyle choices also play a major role in determining whether or not a person develops a cognitive disorder.

There are things that we can do to reduce our risk of Dementia. But the sooner we start the more effective they are! (Credit: Daily Express)

The study investigated eight different factors to see what influence they had to the odds of someone having cognitive impairment. The eight risk factors were, low education (less than a high school diploma), hearing loss, traumatic brain injury, alcohol or substance abuse, high blood pressure, smoking within the last four years, diabetes and finally depression.

Medical studies are often different to conduct because of the need to find large numbers of people to take part. Online studies have helped to solve this problem. (Credit: SOHO Learning Hub)

The study was conducted online with 22,117 participants between the ages of 18 and 89. The study subjects first answered a series of questions about their background after which they were instructed to complete four cognitive tasks. A statistical analysis of the results clearly indicate that possession of even a single risk factor increases the risk of cognitive impairment by about the equivalent of about three years of aging. That is, on average a person with a single risk factor has the cognitive ability of someone three years older than they are.

An unhealthy lifestyle can led to dementia even in young adults! (Credit: Attractions Management)

For those individuals with multiple risk factors the equivalent reduction in cognitive ability is proportional, three years of aging for every risk factor. The study also indicates that the eight factors are all equal in their effect, something that I must admit I rather doubt, I’m still trying to figure out the connection between hearing loss and dementia. Hopefully a further, larger scale study will provide more detailed data about each of the different risk factors. The study does make clear however the importance in personal lifestyle choices in preventing or at least minimizing the extent of dementia.

An Active, healthy life is possible even to an advanced age with proper precautions. Queen Elizabeth lived to 96 and enjoyed life right up to the end! (Credit: Today Show)

With the advances in medicine over the last fifty years the average human life span has increased tremendously, leading to an ever growing population of elderly people. Because of this many in the medical field think that dementia will be the biggest health problem of the 21st century. If that is so many more studies like the one from Toronto will be needed if we’re to make progress in the struggle against dementia.