Where does our Solar System end and Interstellar Space begin? Over the last decade space probes have told us a great deal about the boundary that lies far beyond the orbits of the planets.

When I was growing up I was very interested in space. Not just the space race to get to the Moon either. I knew all about the planets and their moons, the stars, galaxies etc. Back then outer space meant empty space, a vacuum, once you were out of Earth’s atmosphere there was really nothing of any interest until you got to the Moon or some other planet.

This is the way we though of the Solar System back in the 60s. Just a few planets and moons with a lot of empty space in between. (Credit: Wikipedia)

Even back then things were starting to change however. The Physicist Eugene Parker first proposed the existence of the solar wind in the mid-1950s, a prediction that was confirmed by the first interplanetary space probes in the early 1960s. Now in some ways the solar wind may seem pretty much like a vacuum, it only averages around five protons per cubic centimeter but those few particles are moving at a nominal 500 kilometers per sec generating both a large electric current and a strong magnetic field.

Astrophysicist Eugene Parker back when he predicted the existence of the Solar Wind! (Credit: University of Chicago)

As everyone knows those currents and magnetic fields can interact with the Earth’s own magnetic field to generate both the aurora and occasionally, when a particularly strong solar storm strikes, radio and TV interference and even electrical blackouts. And since the solar wind has been blowing now for four billion years it can have a large effect over time. In fact planetary astronomers now think it was the solar wind that slowly, over millions of years ripped away the atmosphere of Mars.

In our modern tech dependent world space weather is now a big deal, one that requires constant monitoring. (Credit: SpaceWeather.com)

As the solar wind spreads outward from the Sun it disperses slowly, losing strength as it reaches the outer solar system. At a distance about twice as far from the Sun as Neptune’s orbit the solar wind collides with the Interstellar Medium (ISM), the tenuous gas and ionized matter between the stars.

At the edge of our Solar System the solar wind collides with the interstellar medium forming the Termination Shock and the Heliopause. (Credit: Sci-News.com)

In many way the solar wind and the ISM are very similar. They are both near vacuums by Earthly standards and they are both composed mainly of hydrogen atoms or hydrogen ionized into protons and electrons. The big difference is in the forces pushing on those particles. The solar wind is exploded out from the Sun and carries the Sun’s magnetic field out with it while the ISM moves in response to the magnetic field of the galaxy.

The Solar Wind is not constant by any means, solar flares like this one often occur to increase the outward flow of particles while the Sun can also be almost quite at times. (Credit: CNET)

When these two electromagnetic clouds collide with each other they generate a kind of electromagnetic wall that’s millions of kilometers thick known as the Termination Shock. Here the particles of the solar wind lose most of their velocity, they just collided with a wall after all. The particles now drift slowly through what is called the heliosheath, a region of space where the solar wind and the ISM mix. Finally, beyond the heliopause is the ISM proper.

Even the space between the stars is not truly empty. There is dust and gas, some of which is ionized and gets pushed around by the magnetic field of the Galaxy. (Credit: Science at your Doorstep)

Now the bubble around our solar system formed by the termination shock and the heliosheath is not perfectly spherical. You see our Sun orbits around the center of the galaxy and as it moves both it, and the bubble produced by the solar wind push their way through the ISM. Because of this the bubble is compressed in front of the Sun’s direction of motion and elongated in the rear.

Pushing against the Interstellar wind the Heliosheath gets compressed up front but elongated to the rear. (Credit: Researchgate)

Now you may have noticed that, aside from once saying “At a distance about twice as far from the Sun as Neptune’s orbit” I haven’t been too precise about the distances from the Sun where the termination shock and heliosheath begin and end. Well, that’s because until recently we didn’t have very accurate information on those distances.

The two Voyager space probes have both passed beyond the Termination Shock and left our Solar System. Both are still working, sending back data telling us about conditions in the Interstellar Medium. (Credit: Britannica)

The first accurate measurement came from the Voyager 1 space probe, which is still continuing to send back data on conditions in the space around it 44 years after it’s launch back in 1977. In August of 2012 Voyager 1’s magnetometer saw a rapid shift in the direction of the magnetic field around it. At the same time the number of low energy particles associated with the solar wind dropped while the number of high energy particles considered to be part of the ISM began to increase. Voyager 1 had passed the termination shock and became the first man made object to enter interstellar space.

Voyager 2 followed its sister in November of 2018 giving scientists two data points about the exact size of the bubble formed by the Sun’s solar wind. But with an object that large two data points still leaves a lot unknowns. The scientists wanted more; they wanted a space probe that could measure the distance to the heliopause in many different directions from back here in Earth orbit. The wanted the Interstellar Boundary Explorer or IBEX satellite.

The Interstellar Boundary Explorer or IBEX satellite. IBEX measures the echo of the solar wind colliding with the ISM to measure the distance to the Termination Shock and Heliopause. (Credit: Pinterest)

The launch of the IBEX probe was on October 19th of 2008 by a method that is more than a bit unusual for those of us who have been watching rocket launches since we were young. The spacecraft was first placed atop its Pegasus XL rocket, which was then suspended beneath NASA’s Stargazer L-1011 aircraft. The stargazer then flew to the island of Kwajalein in the Pacific near the equator. On the 19th the Stargazer took off from Kwajalein and the Pegasus rocket was launched from the aircraft in the same fashion as the old X-15 was launched from a B-52. The IBEX probe was placed into an extremely elliptical orbit of 86,000 kilometers perigee by 260,000 kilometers apogee. In this orbit the satellite is Sun oriented, in other words always able to keep the Sun in view.

NASA’s Stargazer L-1011 aircraft ready to launch a rocket, underneath the aircraft, into orbit. (Credit: Aerotech News and Review)

IBEX makes its measurements by collecting Energetic Neutral Particles (ENPs) that are generated by the collisions between the solar wind and the ISM. On a average day IBEX detects about 600 particles but the greater the intensity of the solar wind the greater the number of ENPs.

Analysis of the data collected by the IBEX space probe. (Credit: Interstellar Boundary Explorer)

In this way IBEX can measure the size and shape of the Sun’s bubble in the same way that a dolphin uses sonar to ‘see’ what’s around it in the ocean. You see the intensity of the solar wind emitted by the Sun varies with time; IBEX then sees that same variation later in the ENPs it detects. The delay being two to six years depending on the energy of the particles and the direction IBEX is looking.

Now scientists working with IBEX at the Los Alamos National Labouratory have used that data to generate a three dimensional map of the heliosheath. At the same time the data also allowed them to calculate the speed with which the Sun’s bubble is moving through the local ISM to be 23.2 kilometers per second. The space probe has succeeded in making detailed measurements at immense distances about objects so faint that no human sense could even tell they existed.

Empty space is not really empty, there’s a lot more going on there than our human senses can perceive. (Credit: TYKMA Electrox)

All of which just shows that what we used to think of as ’empty space’ is a lot more dynamic, and a lot more interesting than we ever imagined it was back in the 1950s and 60s.

NSA releases the first results from the Parker Solar Probe.

Without our Sun life here on Earth would be impossible, we all know that. The Sun’s light not only keeps our planet warm but through the process of photosynthesis generates the food we need to survive. Recognizing this importance for centuries now scientists have examined the Sun with every instrument in their possession. However the very energy that the Sun produces can make it difficult to study. After all, if you get too close you could suffer the same fate as Icarus.

Right now our Sun is going through Solar minimum in its 11 year sunspot cycle. We have had 271 days with NO observable sunspots so far this year. (Credit: Spaceweather.com)

NASA’s Parker Solar probe is the space agency’s latest attempt to get up close and personal with our parent star. Launched back on August 12th of 2018, see my posts of 7 June 2017, 5 September 2018 and 3 November 2018, Parker is designed with a special ‘heat shield’ to protect its delicate instruments from being destroyed by the Sun’s heat. Nevertheless even Parker cannot remain too near the Sun for too long. Instead the probe has been placed in a highly elliptical orbit that takes it in as close as 24 million kilometers to the Sun before sending it back out to 100 million kilometers, a distance that will allow the that heat shield a chance to cool off.

The Parker Solar probe nearly completion. The heat reflector / shield at the top protects the delicate instruments beneath from the Sun’s intense radiation. (Credit: Axios.com)
The planned orbital plot for the Parker Solar Probe is the most complex set of maneuvers ever attempted for a spacecraft. (Credit: Sky and Telescope)

At its closest approach Parker actually flies within the Sun’s atmosphere, the corona, that glow around the Sun that can only be seen during a total eclipse. The question of why the corona is so hot, over a million degrees Kelvin, while the Sun’s surface is relatively cool, about 6,000 Kelvin, is one of the mysteries that Parker was built to study.

A picture I took of the solar eclipse back in August of 2017. At totality the Sun’s corona becomes visible. (Credit: R. A. Lawler)

Learning more about the how the Sun generates the Solar wind, the steam of high-energy particles that among other thing causes auroras here on Earth, is another of the Parker Probe’s main missions. That particular mission is only appropriate since the spacecraft is named for Eugene Parker; the astrophysicist who back in the late 1950s first predicted the existence of the Solar wind. In fact Parker is the first NASA spacecraft to be named for a living scientist, a measure of the respect with which Eugene Parker is held in the space community.

Eugene Parker describing the Solar wind that he predicted. (Credit: CNN.com)

So far the Parker Solar probe has completed three of its planned 24 close passes and now NASA has released the first data dump of measurements taken by the probe. In a series of papers presented at the fall meeting of the American Geophysical Union on December 11th NASA scientists revealed new discoveries about how the Sun generates the Solar wind along with how the magnetic fields within the corona switch polarities on a period ranging from a few seconds to a few minutes.

The papers also detail how the density of dust particles in the atmosphere actually goes down as you get closer to the Sun. This phenomenon is probably due to the pressure of the light and sub-atomic particles being ejected by the Sun and of which the Solar wind is formed. During its most recent close approach back in November Parker was actually able to observe the effect of a Coronal Mass Ejection (CME) on the Solar wind revealing how a CME acts as a ‘snowplow’ pushing the wind ahead of it with increased energy.

A Coronal Mass Ejection (CME). (Credit: Flickr)

And the Parker probe’s mission is only beginning; NASA is planning on another 21 close approaches to the Sun. In fact just next month Parker is scheduled to use a gravity assist from the planet Venus which will send it on an orbit that takes it even closer to the Sun. Eventually the space probe is expected to come within a mere 6.16 million kilometers of the Sun and to reach speeds of 690,000 kilometers per hour, a wild ride indeed.

The Parker Solar probe’s mission is scheduled to last through 2025, who knows what secrets it will learn in that time about the star that is the very center of our Solar system.

Space Weather

So far this year has turned out to be a pretty mild one as far as Space Weather is concerned. What’s Space Weather, you ask? Isn’t space a vacuum and you can’t have weather is a vacuum, can you?

It is certainly true that the density of matter in the space between Earth, the Moon and the other planets is usually less than ten atoms per cubic centimeter, that’s less than one billionth billionth of air density at sea level! Not only is the density extremely low but the matter that is out there is usually in the form of elementary particles, protons and electrons rather than stable atoms. How could such nothing have anything that could be called weather?

Well it turns out that while there may not be very much out there, what there is has a lot of energy in it. In fact those few protons and electrons go speeding through the Solar system at more than 10,000 times the wind speed of a hurricane! And since those particles have electric charge at that speed they can generate some pretty powerful voltages and magnetic fields.

As you might guess space weather is almost totally dominated by the Sun with more than a million tons of material evaporating away from the Sun’s surface every second. Known as the Solar Wind this flow of particles was first predicted in 1957 by the astrophysicist Eugene Parker, for whom NASA’s new Parker Solar Probe is named.

Eugene Parker Explaining the Solar Wind (Credit: New York Times)

The Parker Solar Probe (Credit: NASA)

It is the Solar Wind that is responsible for both the Aurora and the belts of radiation that circle the Earth known as the Van Allen belts. Further out in space it is the Solar Wind that generates the tails of comets and which keeps those tails pointing away from the Sun.

Space Weather is Caused by the Sun (Credit: NOAA)

The power of the Solar Wind varies with the Sun’s approximately eleven-year sunspot cycle and right now the Sun has been quite quiet. During periods of intense sunspot activity however the Solar Wind becomes not only more powerful but more erratic, with massive explosions on the Sun’s surface called Solar flairs blasting out millions of tons of material generating events known as Coronal Mass Ejections or CMEs.

Although it went unrecognized at the time, the first detection of a CME striking the Earth occurred in early September in 1859! On the first of September that year British astronomer Richard Carrington noticed a bright spot on the Sun, a Solar flair. The next night, the night of the second a huge auroral display was seen over much of northern hemisphere, even as far south as Panama. At the same time the brand new U.S. telegraph system experienced unexplained electrifications with operators being shocked and telegraph paper being set on fire.

A similar strike by a CME today would destroy most of the satellites we have in orbit and lead to massive electrical blackouts here on Earth. In fact a magnetic storm from the Sun in March of 1989 is credited with causing a total blackout of the Hydro-Quebec power grid in Canada. Also, the effect that so much radiation might have on astronauts out in space is still unknown but is expected to be a serious health risk.

These days NASA and other space and scientific agencies keep a constant watch on the Sun using satellites such as the joint NASA-ESA Solar Heliospheric (SOHO) and the Solar-Terrestrial Relations Observatory (STEREO) spacecraft. To these satellites will soon be added the Parker Solar Probe, a spacecraft that will travel closer to the Sun than any other man-made device ever has. A daily report for space weather is now being issued to provide warnings for satellite operators, communications corporations as well as power grid utilities.

The SOHO Satellite and an image it took of a Solar Flair (Credit: NASA)

Many scientists and engineers are presently working to develop technologies to protect our electronic infrastructure against the ravages of extreme Space Weather; I know quite a few of them in fact. But the next solar storm could strike at almost any time and there’s a great deal of work to be done. If you’d like to visit NOAA’s website for the daily space weather report click on the link below. (It’s a really cool site!)

https://www.swpc.noaa.gov/

A hundred years ago Space Weather was completely unknown and almost impossible to detect. As our modern societies grow ever more dependent on electronics however the destructive potential of Space Weather is one more way that outer space is now becoming a place that we need to pay close attention to.