Space News for February 2021.

It’s been a busy month. There have been three, count’em three robotic space probes reaching Mars this month and on top of that there have been several announcements that deal with human space flight, both the Artemis program and commercial space flight. Let’s start with the Mars probes.

Uh! Actually the United Arab Emirates Amal ‘Hope’ space probe is now in orbit around Mars! (Credit: Smithsonian Magazine)

Last July three different nations, China, the United Arab Emirates (UAE) and the US all launched space probes towards Mars. The reason why all three probes were launched at nearly the same time is that as Earth and the Red Planet orbit around the Sun once every 26 months they come into a position where the energy cost, and therefore the dollar cost of going from Earth to Mars is a minimum. Last July was just such a minimum and because of this fact of orbital dynamics for the last several decades about every two years somebody has been sending a probe, or more than one, to Mars.

China’s Tianwen-1 probe entered Mars orbit just one day after the UAE’s Amal. The Chinese probe still has the most hazardous part of its mission ahead of it as the lander portion, under the canopy, has to descend to the Martian surface. (Credit: SimpleRockets 2)

While the US has sent more probes to Mars than any nation the other two of this year’s probes to the Red Planet are the first for the UAE and China. Things started off with the UAE’s ‘Amal’ orbital probe that was launched last July 19th aboard a Japanese H-IIA rocket and is the simplest of the three missions. Amal, the word is Arabic for hope, entered its initial orbit around Mars on February 9th after successfully firing its braking rockets for 27 minutes to slow its speed.

While the Amal probe was built in the UAE it was launched by a Japanese rocket. (Credit: DNA India)

Amal will now spend the next three months testing its instruments and adjusting its orbit to its designed altitude before starting to observe the Red planet. The probe carries three main experiments that are designed to observe the weather on Mars as well as to monitor the leaking of Mar’s atmosphere into space. UAE’s success with Amal makes them only the fifth nation to succeed in reaching Mars with the others being the US, the Soviet Union, the European Space Agency (ESA) and India.

The complex Tianwen-1 probe was both built and launched entirely by China clearly showing that the Asian superpower is now in the forefront of space exploration! (Credit: The New York Times)

China became the sixth nation to do so just one day later as their Tianwen-1 mission also successfully entered Mars orbit on February 10th. Of the three missions China’s is the most complex with the probe containing an orbiter module, a lander and even a small rover which is carried on the lander. As with the UAE’s hope, the Tianwen-1 will spend the next few weeks checking out its equipment and adjusting its orbit before beginning its work of studying the Red Planet.

Artists illustration of the Tianwen-1 lander ready to deploy its rover. If successful this would make China only the second nation to place a rover on the Marian surface. (Credit: Business Standard)

Tianwen-1’s first task will be to search for the best possible landing site for the probe’s 240 kg rover. Although a landing site somewhere in the Utopia Planitia region of the Martian surface has been mentioned by Chinese space authorities the exact choice of the landing site will probably not be made until May or June. Once the site has been chosen the Tianwen-1 probe will separate and the lander, carrying the rover, will attempt a soft touchdown on Mars. If successful this landing would make China only the second nation, after the US, to place a spacecraft on the surface of the Red Planet.

The final space probe to reach Mars this year is NASA’s Perseverance rover. As with the US space agency’s other Martian landers, Perseverance did not first go into Martian orbit but instead plunged directly into the Red Planet’s atmosphere in a maneuver that has been referred to as seven minutes of terror.

Perseverance is NASA’s fifth Martian rover with each one increasing in size, complexity and mission capability. (Credit: DOGO News)

 You see right now Mars is so far away that it takes a radio signal traveling at the speed of light about 11.5 minutes to make a round trip to Earth and back. That means that any space probe reaching Mars: Amal and Tianwen-1 as well as Perseverance must accomplish all of their insertion maneuvers on their own, without any instructions from Earth. So during the most critical parts of the missions the scientists back here on Earth can only sit back and pray that everything will go right.

Radio waves travel at the speed of light, so as a space probe gets millions of kilometers from the Earth there is a delay in communications as the radio signals travel back and forth. (Credit: www.qrg.northwestern.edu)

Turned out everything went like clockwork. “Touchdown confirmed,” was the call from the jet Propulsion Labouratory (JPL) at 3:55 PM on the 18th of February as the rover landed successfully at its target, a Martian crater named Jezero. Unlike previous Martian rovers, whose landing sites were selected to be wide open, flat and ‘safe’, Jezero is much rougher, but much more interesting terrain with evidence from orbit indicating that it was once a crater lake fed by two or more rivers. Planetary scientists feel that if Mars ever did possess life Jezero is one of the best places to go looking for it.

Incredible views of Perseverance actually landing on Mars. (Credit: SciTechDaily)

Although Perseverance has already sent back several images of its landing area the engineers at JPL will spend the next 90 days checking out the rover’s systems before beginning the scientific mission in earnest. Also occurring during this check out phase will be the deployment of the small helicopter ‘Ingenuity’ that Perseverance carried with it to the Martian surface. If it is successful Ingenuity will become the first man-made object to fly on another world.

But even while robotic probes to Mars are dominating the space news this month there’s still some important goings on dealing with human spaceflight back here on Earth. The main news concerns NASA’s Space Launch System (SLS) that had its final hot fire test cut off prematurely back on the 16th of January, see my post of 30 January 2021. In the weeks since then NASA has analyzed the test abort and decided that the only problem was that the test parameters for the hydraulic pressure in a vector control mechanism had been set too narrowly. So while the test did in fact complete 15 out of 23 objectives NASA has decided to redo the test in the hopes of a better outcome.

The Hot Fire test of the SLS first stage started well enough but then aborted after only one minute. NASA has decided to repeat the test in order to get a more complete data set. (Credit: Space News)

    The test was scheduled to be repeated on the 25th of February but that date has already been delayed due to problems with a fuel valve. Another date has not been announced so the test is not likely to occur before March at the earliest. Assuming the second test is more successful than the first the rocket could then be ready to finally be transported to the Kennedy Space Center sometime in April. All this is yet another three months delay on a program that is years behind schedule and billions of dollars over budget.

Which may have a great deal to do with our final item. As a part of its Artemis program to put Americans back on the Moon and to establish a lunar base NASA is determined to also put a space station into orbit around the Moon. Called the Lunar Gateway this station would serve as an outpost for the astronauts on their way to the lunar surface as well as a place to park the lunar lander.

NASA’s full plan for a Lunar Gateway Space Station. Now two modules, the Power And Propulsion Element and the Habitation Module will be launched using Space X’s Falcon Heavy. (Credit: NASAspaceflight.com)

As initially set out by the space agency the construction of the gateway was to be carried out with equipment launched from Earth and sent into lunar orbit by the SLS. However NASA has just selected Space X Corporation to launch the first two sections of Gateway, a decision that was without question due to the enormous costs and unreliability of the SLS. The two sections in question are the Power and Propulsion Element (PPE) along with the Habitation and Logistics Outpost (HALO) module.

 The two modules will now be launched aboard a Space X Falcon Heavy launch vehicle, at a cost to NASA of $318 million dollars, less than half the cost of a single SLS launch. This announcement comes on the heals of last month’s announcement that NASA’s Europa Clipper robotic probe to Jupiter’s moon may also launch on a Falcon Heavy, and latest reporting now says that it almost certainly will. These changes in plan will leave the SLS with only the single remaining task of ferrying astronauts and their Orion capsule back and forth to the moon. All of NASA’s other heavy launch missions for the next decade are being taken over by commercial corporations.

Launch of the first Space X Falcon Heavy. (Credit: Space X)

So it certainly appears that the age of commercial space travel is upon us. NASA, and the space agencies of other nations will continue to carry out the exploration of other worlds. However the task of getting into space, the launching of rockets carrying payloads into orbit will soon belong almost entirely to profit making corporations that are determined to turn space into just another place to earn a dollar.

Space News for January 2021.

It’s the start of a brand new year and unfortunately 2021 is not off to a good start for space exploration. Two stories in particular illustrate the difficulties that often arise whenever we try to do something for the first time.

One story that didn’t get a lot of coverage but is nevertheless a big disappointment concerned NASA’s Insight Mars Lander. Insight touched down on the Martian surface almost two years ago, on the 26th of November 2018 with big hopes for discovering a great deal about conditions on the Red Planet. Insight was equipped with numerous instruments for observing the Martian weather and seismic activity, that is Marsquakes. The showpiece of the mission however was a robotic arm with a drill, known as the ‘Mole’, which it was hoped would drill down three meters into the Martian soil.

NASA’s Insight lander. The failed drill, the ‘Mole’ is foreground right while the seismograph is foreground left. (Credit: ABC News)

There were problems right from the start. As described by NASA engineers the Martian soil had an ‘unexpected tendency to clump’. Because of this the lander’s drill never got the leverage it needed to penetrate down more than a few centimetres despite the engineers trying every trick they could think of. The last attempt was made on January 9th to no avail. With no prospect of a successful resolution the Insight program managers have decided to cancel any further efforts.

But that doesn’t mean that the Insight lander is a total failure, its seismograph has already detected several Marsquakes and should continue working until at least the end of 2022. And once NASA’s Perseverance rover lands on Mars on the 18th of February NASA plans to use the weather instruments on the two spacecraft to establish the first ever weather network on another planet.

NASA’s Perseverance rover and it’s main scientific instruments. Perseverance will join the Curiosity rover on the Martian surface next month! (Credit: NASA Mars Exploration Program)

The big news however comes from back here on planet Earth where NASA’s Space Launch System (SLS) suffered a ‘Major Component Failure’ during a critical ‘Hot Fire Test’ of its first stage on the 16th of January. The SLS, whose main contractor is Boeing corporation, is the big rocket launch vehicle that is the foundation of NASA’s Artemis program with a goal of returning American astronauts to the Moon in the next half dozen years or so. NASA has already spent $18 billion over the last ten years on development of the SLS and the program is more than three years behind schedule.

Ignition of the ‘Hot Fire’ test of the first stage of the Space Launch System (SLS). (Credit: SpaceNews)

The hot fire test, performed at NASA’s Stennis Space Center in Mississippi, was intended to be the last test of the SLS’s first stage prior to its being sent to the Kennedy Space Center. Once at Kennedy the rocket will be assembled with its upper stages and the Orion crew capsule in preparation for a first, unmanned lunar mission scheduled for sometime late this year. The plan of the test at Stennis was to completely fuel the first stage and, after clamping the rocket tight to the facility’s B-2 test stand, ignite the four main RS-25 engines, the same engines that powered the space shuttle. The length of the test was designed so that the engines would carry out an entire launch profile, about eight minutes firing.

At this moment all four first stage engines are firing perfectly. (Credit: SpaceFlight Insider)

For the first minute everything was proceeding well, the engines where producing 109% of nominal thrust and preparing to throttle down to 95% when a flash of light was seen near the thermal protection blanket on engine number 4. These blankets are designed to prevent engine parts from overheating due to the exhaust of the other three engines. Seconds later the rocket’s on-board computer system detected an as yet unknown fault and the computer ordered all four engines to shut down. The entire test lasted only 67 seconds.

While the post mortem is just underway and the precise cause of the shutdown still unknown the fact is that the test fell far short of a success and at the very least will have to be repeated. That means at least another month’s delay along with its associated cost on a program that is way over budget and behind schedule. And if it should turn out that there is a real design flaw that would certainly kill any chance of a launch later this year.

So far the SLS has gotten plenty of press coverage but the question is when will it finally launch! (Credit: Autoevolution)

Also, the multiple delays and cost overruns of the SLS are causing some members of Congress and even scientists at NASA to question the entire Artemis program given its dependence on an SLS that seems to be going nowhere. NASA has already spent $18 billion on the SLS along with another $18 billion on the Orion Space Capsule that will carry the astronauts to the Moon and back. Will we ever actually see a mission performed with those two very expensive pieces of equipment? Not at the rate we’re going.

The Orion capsule has cost as much as the SLS but at least it’s ready to go! Without a launch vehicle however it’s going nowhere fast. (Credit: Space.com)

And there is one last piece of bad news, for Boeing at least. In funding NASA’s Europa Clipper robotic space probe to that icy moon of Jupiter Congress had mandated that the launch vehicle for the space probe had to be the SLS. Well in NASA’s 2021 fiscal budget there was a slight change in those orders to only require that the SLS be used ‘if available’.

Now the Europa Clipper isn’t scheduled to launch until the mid-2020’s so the rocket’s current problems will hopefully be solved by then. Nevertheless the SLS will still be very costly and presumably every rocket will be needed for Artemis. In fact a cost analysis by NASA has indicated that if the Clipper were to be launched by the Space X Falcon Heavy it could save the space agency $1.5 billion!

Space X’s Falcon Heavy has only had one launch so far but it’s ready to start launching heavy space probes like the Europa Clipper. (Credit: SpaceNews)

Maybe for once the officials at both NASA and in Congress will do the right thing. The Space Launch System may be necessary to get us back to the Moon this decade but any attempt to use it in other space missions would simply be tossing good money after bad.

I’ll end today with a bit of administrative news. With the end of the Trump administration NASA director Jim Bridenstine has tendered his resignation and been temporarily replace by his deputy Steve Jurczyk until the position can be permanently filled. Although Bridenstine did a better job of running the space agency than I’d expected (feared?) nevertheless he was a politician taking a job that had always gone to a scientist.

NASA’s Deputy Administrator Steve Jurczyk has been chosen by President Biden as a temporary Director. With a long history of working for the space agency he might be a good choice for permanent director. (Credit: NASA)

Hopefully the new Biden administration’s choice for NASA director will return to the idea of science over politics. It’s worth noting that two decorations that President Biden has chosen for the oval office are a portrait of America’s founding scientist Ben Franklin and a Moon rock. Our new President certainly wants to promote truth and science over lies and conspiracy theories and that can only be a good thing!